Timezone: »
Poster
BEER: Fast $O(1/T)$ Rate for Decentralized Nonconvex Optimization with Communication Compression
Haoyu Zhao · Boyue Li · Zhize Li · Peter Richtarik · Yuejie Chi
Communication efficiency has been widely recognized as the bottleneck for large-scale decentralized machine learning applications in multi-agent or federated environments. To tackle the communication bottleneck, there have been many efforts to design communication-compressed algorithms for decentralized nonconvex optimization, where the clients are only allowed to communicate a small amount of quantized information (aka bits) with their neighbors over a predefined graph topology. Despite significant efforts, the state-of-the-art algorithm in the nonconvex setting still suffers from a slower rate of convergence $O((G/T)^{2/3})$ compared with their uncompressed counterpart, where $G$ measures the data heterogeneity across different clients, and $T$ is the number of communication rounds. This paper proposes BEER, which adopts communication compression with gradient tracking, and shows it converges at a faster rate of $O(1/T)$. This significantly improves over the state-of-the-art rate, by matching the rate without compression even under arbitrary data heterogeneity. Numerical experiments are also provided to corroborate our theory and confirm the practical superiority of beer in the data heterogeneous regime.
Author Information
Haoyu Zhao (Princeton University)
Boyue Li (Carnegie Mellon University)
Zhize Li (Carnegie Mellon University)
Peter Richtarik (KAUST)
Yuejie Chi (Carnegie Mellon University)
More from the Same Authors
-
2021 Spotlight: Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free Reinforcement Learning »
Gen Li · Laixi Shi · Yuxin Chen · Yuantao Gu · Yuejie Chi -
2021 : Better Linear Rates for SGD with Data Shuffling »
Grigory Malinovsky · Alibek Sailanbayev · Peter Richtarik -
2021 : Better Linear Rates for SGD with Data Shuffling »
Grigory Malinovsky · Alibek Sailanbayev · Peter Richtarik -
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : Shifted Compression Framework: Generalizations and Improvements »
Egor Shulgin · Peter Richtarik -
2021 : ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method »
Zhize Li -
2021 : EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin · Eduard Gorbunov · Zhize Li -
2021 : On Server-Side Stepsizes in Federated Optimization: Theory Explaining the Heuristics »
Grigory Malinovsky · Konstantin Mishchenko · Peter Richtarik -
2021 : Policy Mirror Descent for Regularized RL: A Generalized Framework with Linear Convergence »
Wenhao Zhan · Shicong Cen · Baihe Huang · Yuxin Chen · Jason Lee · Yuejie Chi -
2021 : Policy Mirror Descent for Regularized RL: A Generalized Framework with Linear Convergence »
Wenhao Zhan · Shicong Cen · Baihe Huang · Yuxin Chen · Jason Lee · Yuejie Chi -
2021 : FedMix: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning »
Elnur Gasanov · Ahmed Khaled Ragab Bayoumi · Samuel Horváth · Peter Richtarik -
2021 : FedMix: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning »
Elnur Gasanov · Ahmed Khaled Ragab Bayoumi · Samuel Horváth · Peter Richtarik -
2022 Poster: Theoretically Better and Numerically Faster Distributed Optimization with Smoothness-Aware Quantization Techniques »
Bokun Wang · Mher Safaryan · Peter Richtarik -
2022 : RandProx: Primal-Dual Optimization Algorithms with Randomized Proximal Updates »
Laurent Condat · Peter Richtarik -
2022 : Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation »
Rustem Islamov · Xun Qian · Slavomír Hanzely · Mher Safaryan · Peter Richtarik -
2022 : A Multi-Token Coordinate Descent Method for Vertical Federated Learning »
Pedro Valdeira · Yuejie Chi · Claudia Soares · Joao Xavier -
2022 : Certified Robustness in Federated Learning »
Motasem Alfarra · Juan Perez · Egor Shulgin · Peter Richtarik · Bernard Ghanem -
2023 Poster: 2Direction: Theoretically Faster Distributed Training with Bidirectional Communication Compression »
Alexander Tyurin · Peter Richtarik -
2023 Poster: A Computation and Communication Efficient Method for Distributed Nonconvex Problems in the Partial Participation Setting »
Alexander Tyurin · Peter Richtarik -
2023 Poster: Counterfactual Generation with Identifiability Guarantee »
hanqi yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 Poster: The Curious Price of Distributional Robustness in Reinforcement Learning with a Generative Model »
Laixi Shi · Gen Li · Yuting Wei · Yuxin Chen · Matthieu Geist · Yuejie Chi -
2023 Poster: Seeing is not Believing: Robust Reinforcement Learning against Spurious Correlation »
Wenhao Ding · Laixi Shi · Yuejie Chi · DING ZHAO -
2023 Poster: Identification of Nonlinear Latent Hierarchical Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 Poster: A Guide Through the Zoo of Biased SGD »
Yury Demidovich · Grigory Malinovsky · Igor Sokolov · Peter Richtarik -
2023 Poster: Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid Reinforcement Learning »
Gen Li · Wenhao Zhan · Jason Lee · Yuejie Chi · Yuxin Chen -
2023 Poster: Optimal Time Complexities of Parallel Stochastic Optimization Methods Under a Fixed Computation Model »
Alexander Tyurin · Peter Richtarik -
2023 Poster: Momentum Provably Improves Error Feedback! »
Ilyas Fatkhullin · Alexander Tyurin · Peter Richtarik -
2022 Spotlight: Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling »
Dmitry Kovalev · Alexander Gasnikov · Peter Richtarik -
2022 Spotlight: Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with an Inexact Prox »
Abdurakhmon Sadiev · Dmitry Kovalev · Peter Richtarik -
2022 Spotlight: Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees »
Aleksandr Beznosikov · Peter Richtarik · Michael Diskin · Max Ryabinin · Alexander Gasnikov -
2022 Spotlight: Optimal Algorithms for Decentralized Stochastic Variational Inequalities »
Dmitry Kovalev · Aleksandr Beznosikov · Abdurakhmon Sadiev · Michael Persiianov · Peter Richtarik · Alexander Gasnikov -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Workshop: Federated Learning: Recent Advances and New Challenges »
Shiqiang Wang · Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Peter Richtarik · Praneeth Vepakomma · Han Yu -
2022 Poster: Variance Reduced ProxSkip: Algorithm, Theory and Application to Federated Learning »
Grigory Malinovsky · Kai Yi · Peter Richtarik -
2022 Poster: Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with an Inexact Prox »
Abdurakhmon Sadiev · Dmitry Kovalev · Peter Richtarik -
2022 Poster: A Damped Newton Method Achieves Global $\mathcal O \left(\frac{1}{k^2}\right)$ and Local Quadratic Convergence Rate »
Slavomír Hanzely · Dmitry Kamzolov · Dmitry Pasechnyuk · Alexander Gasnikov · Peter Richtarik · Martin Takac -
2022 Poster: Minimax-Optimal Multi-Agent RL in Markov Games With a Generative Model »
Gen Li · Yuejie Chi · Yuting Wei · Yuxin Chen -
2022 Poster: EF-BV: A Unified Theory of Error Feedback and Variance Reduction Mechanisms for Biased and Unbiased Compression in Distributed Optimization »
Laurent Condat · Kai Yi · Peter Richtarik -
2022 Poster: Coresets for Vertical Federated Learning: Regularized Linear Regression and $K$-Means Clustering »
Lingxiao Huang · Zhize Li · Jialin Sun · Haoyu Zhao -
2022 Poster: Optimal Algorithms for Decentralized Stochastic Variational Inequalities »
Dmitry Kovalev · Aleksandr Beznosikov · Abdurakhmon Sadiev · Michael Persiianov · Peter Richtarik · Alexander Gasnikov -
2022 Poster: SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression »
Zhize Li · Haoyu Zhao · Boyue Li · Yuejie Chi -
2022 Poster: Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling »
Dmitry Kovalev · Alexander Gasnikov · Peter Richtarik -
2022 Poster: Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees »
Aleksandr Beznosikov · Peter Richtarik · Michael Diskin · Max Ryabinin · Alexander Gasnikov -
2021 : Poster Session 2 (gather.town) »
Wenjie Li · Akhilesh Soni · Jinwuk Seok · Jianhao Ma · Jeffery Kline · Mathieu Tuli · Miaolan Xie · Robert Gower · Quanqi Hu · Matteo Cacciola · Yuanlu Bai · Boyue Li · Wenhao Zhan · Shentong Mo · Junhyung Lyle Kim · Sajad Fathi Hafshejani · Chris Junchi Li · Zhishuai Guo · Harshvardhan Harshvardhan · Neha Wadia · Tatjana Chavdarova · Difan Zou · Zixiang Chen · Aman Gupta · Jacques Chen · Betty Shea · Benoit Dherin · Aleksandr Beznosikov -
2021 : Contributed talks in Session 3 (Zoom) »
Oliver Hinder · Wenhao Zhan · Akhilesh Soni · Grigory Malinovsky · Boyue Li -
2021 : Q&A with Professor Peter Richtarik »
Peter Richtarik -
2021 : Keynote Talk: Permutation Compressors for Provably Faster Distributed Nonconvex Optimization (Peter Richtarik) »
Peter Richtarik -
2021 : Poster Session 1 (gather.town) »
Hamed Jalali · Robert Hönig · Maximus Mutschler · Manuel Madeira · Abdurakhmon Sadiev · Egor Shulgin · Alasdair Paren · Pascal Esser · Simon Roburin · Julius Kunze · Agnieszka Słowik · Frederik Benzing · Futong Liu · Hongyi Li · Ryotaro Mitsuboshi · Grigory Malinovsky · Jayadev Naram · Zhize Li · Igor Sokolov · Sharan Vaswani -
2021 Poster: Smoothness Matrices Beat Smoothness Constants: Better Communication Compression Techniques for Distributed Optimization »
Mher Safaryan · Filip Hanzely · Peter Richtarik -
2021 Poster: Fast Policy Extragradient Methods for Competitive Games with Entropy Regularization »
Shicong Cen · Yuting Wei · Yuejie Chi -
2021 Poster: EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin -
2021 Poster: Error Compensated Distributed SGD Can Be Accelerated »
Xun Qian · Peter Richtarik · Tong Zhang -
2021 Poster: CANITA: Faster Rates for Distributed Convex Optimization with Communication Compression »
Zhize Li · Peter Richtarik -
2021 Poster: Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free Reinforcement Learning »
Gen Li · Laixi Shi · Yuxin Chen · Yuantao Gu · Yuejie Chi -
2021 Poster: Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting »
Gen Li · Yuxin Chen · Yuejie Chi · Yuantao Gu · Yuting Wei -
2021 Poster: Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex Decentralized Optimization Over Time-Varying Networks »
Dmitry Kovalev · Elnur Gasanov · Alexander Gasnikov · Peter Richtarik -
2021 Oral: EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin -
2020 : Poster Session 1 (gather.town) »
Laurent Condat · Tiffany Vlaar · Ohad Shamir · Mohammadi Zaki · Zhize Li · Guan-Horng Liu · Samuel Horváth · Mher Safaryan · Yoni Choukroun · Kumar Shridhar · Nabil Kahale · Jikai Jin · Pratik Kumar Jawanpuria · Gaurav Kumar Yadav · Kazuki Koyama · Junyoung Kim · Xiao Li · Saugata Purkayastha · Adil Salim · Dighanchal Banerjee · Peter Richtarik · Lakshman Mahto · Tian Ye · Bamdev Mishra · Huikang Liu · Jiajie Zhu -
2020 : Contributed talks in Session 1 (Zoom) »
Sebastian Stich · Laurent Condat · Zhize Li · Ohad Shamir · Tiffany Vlaar · Mohammadi Zaki -
2020 : Contributed Video: PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization, Zhize Li »
Zhize Li -
2020 Poster: Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin Algorithm »
Adil Salim · Peter Richtarik -
2020 Poster: Linearly Converging Error Compensated SGD »
Eduard Gorbunov · Dmitry Kovalev · Dmitry Makarenko · Peter Richtarik -
2020 Poster: Random Reshuffling: Simple Analysis with Vast Improvements »
Konstantin Mishchenko · Ahmed Khaled Ragab Bayoumi · Peter Richtarik -
2020 Spotlight: Linearly Converging Error Compensated SGD »
Eduard Gorbunov · Dmitry Kovalev · Dmitry Makarenko · Peter Richtarik -
2020 Session: Orals & Spotlights Track 21: Optimization »
Peter Richtarik · Marco Cuturi -
2020 Poster: Lower Bounds and Optimal Algorithms for Personalized Federated Learning »
Filip Hanzely · Slavomír Hanzely · Samuel Horváth · Peter Richtarik -
2020 Poster: Optimal and Practical Algorithms for Smooth and Strongly Convex Decentralized Optimization »
Dmitry Kovalev · Adil Salim · Peter Richtarik -
2020 Poster: Breaking the Sample Size Barrier in Model-Based Reinforcement Learning with a Generative Model »
Gen Li · Yuting Wei · Yuejie Chi · Yuantao Gu · Yuxin Chen -
2020 Poster: Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and Variance Reduction »
Gen Li · Yuting Wei · Yuejie Chi · Yuantao Gu · Yuxin Chen -
2019 : Lunch break and poster »
Felix Sattler · Khaoula El Mekkaoui · Neta Shoham · Cheng Hong · Florian Hartmann · Boyue Li · Daliang Li · Sebastian Caldas Rivera · Jianyu Wang · Kartikeya Bhardwaj · Tribhuvanesh Orekondy · YAN KANG · Dashan Gao · Mingshu Cong · Xin Yao · Songtao Lu · JIAHUAN LUO · Shicong Cen · Peter Kairouz · Yihan Jiang · Tzu Ming Hsu · Aleksei Triastcyn · Yang Liu · Ahmed Khaled Ragab Bayoumi · Zhicong Liang · Boi Faltings · Seungwhan Moon · Suyi Li · Tao Fan · Tianchi Huang · Chunyan Miao · Hang Qi · Matthew Brown · Lucas Glass · Junpu Wang · Wei Chen · Radu Marculescu · tomer avidor · Xueyang Wu · Mingyi Hong · Ce Ju · John Rush · Ruixiao Zhang · Youchi ZHOU · Françoise Beaufays · Yingxuan Zhu · Lei Xia -
2019 Poster: A unified variance-reduced accelerated gradient method for convex optimization »
Guanghui Lan · Zhize Li · Yi Zhou -
2019 Poster: RSN: Randomized Subspace Newton »
Robert Gower · Dmitry Kovalev · Felix Lieder · Peter Richtarik -
2019 Poster: SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points »
Zhize Li -
2019 Poster: Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates »
Adil Salim · Dmitry Kovalev · Peter Richtarik -
2019 Spotlight: Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates »
Adil Salim · Dmitry Kovalev · Peter Richtarik -
2018 Poster: Stochastic Spectral and Conjugate Descent Methods »
Dmitry Kovalev · Peter Richtarik · Eduard Gorbunov · Elnur Gasanov -
2018 Poster: Nonparametric Density Estimation under Adversarial Losses »
Shashank Singh · Ananya Uppal · Boyue Li · Chun-Liang Li · Manzil Zaheer · Barnabas Poczos -
2018 Poster: Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization »
Robert Gower · Filip Hanzely · Peter Richtarik · Sebastian Stich -
2018 Poster: SEGA: Variance Reduction via Gradient Sketching »
Filip Hanzely · Konstantin Mishchenko · Peter Richtarik -
2017 Poster: Predictive State Recurrent Neural Networks »
Carlton Downey · Ahmed Hefny · Byron Boots · Geoffrey Gordon · Boyue Li -
2015 Poster: Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling »
Zheng Qu · Peter Richtarik · Tong Zhang