Timezone: »
Modern statistical estimation is often performed in a distributed setting where each sample belongs to single user who shares their data with a central server. Users are typically concerned with preserving the privacy of their sample, and also with minimizing the amount of data they must transmit to the server. We give improved private and communication-efficient algorithms for estimating several popular measures of the entropy of a distribution. All of our algorithms have constant communication cost and satisfy local differential privacy. For a joint distribution on many variables whose conditional independence graph is a tree, we describe algorithms for estimating Shannon entropy that require a number of samples that is linear in the number of variables, compared to the quadratic sample complexity of prior work. We also describe an algorithm for estimating Gini entropy whose sample complexity has no dependence on the support size of the distribution and can be implemented using a single round of concurrent communication between the users and the server, while the previously best-known algorithm has high communication cost and requires the server to facilitate interaction between the users. Finally, we describe an algorithm for estimating collision entropy that matches the space and sample complexity of the best known algorithm but generalizes it to the private and communication-efficient setting.
Author Information
Gecia Bravo-Hermsdorff (UCL, department of statistics)
Róbert Busa-Fekete (Google Research)
Mohammad Ghavamzadeh (Google Research)
Andres Munoz Medina (Google)
Umar Syed (Google Research)
More from the Same Authors
-
2021 : A Joint Exponential Mechanism for Differentially Private Top-k Set »
Andres Munoz Medina · Matthew Joseph · Jennifer Gillenwater · Monica Ribero Diaz -
2021 : Population Level Privacy Leakage in Binary Classification wtih Label Noise »
Róbert Busa-Fekete · Andres Munoz Medina · Umar Syed · Sergei Vassilvitskii -
2021 : On the Pitfalls of Label Differential Privacy »
Andres Munoz Medina · Róbert Busa-Fekete · Umar Syed · Sergei Vassilvitskii -
2022 : A Mixture-of-Expert Approach to RL-based Dialogue Management »
Yinlam Chow · Azamat Tulepbergenov · Ofir Nachum · Dhawal Gupta · Moonkyung Ryu · Mohammad Ghavamzadeh · Craig Boutilier -
2022 Poster: Regret Bounds for Multilabel Classification in Sparse Label Regimes »
Róbert Busa-Fekete · Heejin Choi · Krzysztof Dembczynski · Claudio Gentile · Henry Reeve · Balazs Szorenyi -
2022 Poster: Robust Reinforcement Learning using Offline Data »
Kishan Panaganti · Zaiyan Xu · Dileep Kalathil · Mohammad Ghavamzadeh -
2022 Poster: Operator Splitting Value Iteration »
Amin Rakhsha · Andrew Wang · Mohammad Ghavamzadeh · Amir-massoud Farahmand -
2022 Poster: Efficient Risk-Averse Reinforcement Learning »
Ido Greenberg · Yinlam Chow · Mohammad Ghavamzadeh · Shie Mannor -
2022 Affinity Workshop: LatinX in AI »
Maria Luisa Santiago · Juan Banda · CJ Barberan · MIGUEL GONZALEZ-MENDOZA · Caio Davi · Sara Garcia · Jorge Diaz · Fanny Nina Paravecino · Carlos Miranda · Gissella Bejarano Nicho · Fabian Latorre · Andres Munoz Medina · Abraham Ramos · Laura Montoya · Isabel Metzger · Andres Marquez · Miguel Felipe Arevalo-Castiblanco · Jorge Mendez · Karla Caballero · Atnafu Lambebo Tonja · Germán Olivo · Karla Caballero Barajas · Francisco Zabala -
2021 : Population Level Privacy Leakage in Binary Classification wtih Label Noise »
Róbert Busa-Fekete · Andres Munoz Medina · Umar Syed · Sergei Vassilvitskii -
2021 Poster: Identity testing for Mallows model »
Róbert Busa-Fekete · Dimitris Fotakis · Balazs Szorenyi · Emmanouil Zampetakis -
2021 Poster: Adaptive Sampling for Minimax Fair Classification »
Shubhanshu Shekhar · Greg Fields · Mohammad Ghavamzadeh · Tara Javidi -
2021 Poster: Private and Non-private Uniformity Testing for Ranking Data »
Róbert Busa-Fekete · Dimitris Fotakis · Emmanouil Zampetakis -
2021 Social: Latinx in AI Social »
Andres Munoz Medina · Maria Luisa Santiago -
2021 : Closing Remarks »
Andres Munoz Medina -
2021 : Q&A Oral presentations »
Matias Valdenegro-Toro · Andres Munoz Medina · Johan Obando Ceron · Anil Batra -
2021 : On the Pitfalls of Label Differential Privacy »
Andres Munoz Medina · Róbert Busa-Fekete · Umar Syed · Sergei Vassilvitskii -
2021 Affinity Workshop: LatinX in AI (LXAI) Research @ NeurIPS 2021 »
Maria Luisa Santiago · Andres Munoz Medina · Laura Montoya · Karla Caballero Barajas · Isabel Metzger · Jose Gallego-Posada · Juan Banda · Gabriela Vega · Amanda Duarte · Patrick Feeney · Lourdes Ramírez Cerna · Walter M Mayor · Omar U. Florez · Rosina Weber · Rocio Zorrilla -
2020 Poster: Online Planning with Lookahead Policies »
Yonathan Efroni · Mohammad Ghavamzadeh · Shie Mannor -
2020 Session: Orals & Spotlights Track 09: Reinforcement Learning »
Pulkit Agrawal · Mohammad Ghavamzadeh -
2019 Poster: Differentially Private Covariance Estimation »
Kareem Amin · Travis Dick · Alex Kulesza · Andres Munoz Medina · Sergei Vassilvitskii -
2018 Poster: A no-regret generalization of hierarchical softmax to extreme multi-label classification »
Marek Wydmuch · Kalina Jasinska-Kobus · Mikhail Kuznetsov · Róbert Busa-Fekete · Krzysztof Dembczynski -
2018 Poster: Distributed Stochastic Optimization via Adaptive SGD »
Ashok Cutkosky · Róbert Busa-Fekete -
2017 Poster: Revenue Optimization with Approximate Bid Predictions »
Andres Munoz Medina · Sergei Vassilvitskii -
2017 Poster: Statistical Cost Sharing »
Eric Balkanski · Umar Syed · Sergei Vassilvitskii -
2015 Poster: Online F-Measure Optimization »
Róbert Busa-Fekete · Balázs Szörényi · Krzysztof Dembczynski · Eyke Hüllermeier -
2015 Poster: Online Rank Elicitation for Plackett-Luce: A Dueling Bandits Approach »
Balázs Szörényi · Róbert Busa-Fekete · Adil Paul · Eyke Hüllermeier -
2014 Poster: Repeated Contextual Auctions with Strategic Buyers »
Kareem Amin · Afshin Rostamizadeh · Umar Syed -
2014 Poster: Multi-Class Deep Boosting »
Vitaly Kuznetsov · Mehryar Mohri · Umar Syed -
2013 Poster: Learning Prices for Repeated Auctions with Strategic Buyers »
Kareem Amin · Afshin Rostamizadeh · Umar Syed