Timezone: »
We study the problem of reward shaping to accelerate the training process of a reinforcement learning agent. Existing works have considered a number of different reward shaping formulations; however, they either require external domain knowledge or fail in environments with extremely sparse rewards. In this paper, we propose a novel framework, Exploration-Guided Reward Shaping (ExploRS), that operates in a fully self-supervised manner and can accelerate an agent's learning even in sparse-reward environments. The key idea of ExploRS is to learn an intrinsic reward function in combination with exploration-based bonuses to maximize the agent's utility w.r.t. extrinsic rewards. We theoretically showcase the usefulness of our reward shaping framework in a special family of MDPs. Experimental results on several environments with sparse/noisy reward signals demonstrate the effectiveness of ExploRS.
Author Information
Rati Devidze (MPI-SWS)
Parameswaran Kamalaruban (EPFL)
Adish Singla (MPI-SWS)
More from the Same Authors
-
2021 : Reward Poisoning in Reinforcement Learning: Attacks Against Unknown Learners in Unknown Environments »
Amin Rakhsha · Xuezhou Zhang · Jerry Zhu · Adish Singla -
2021 : Poster: Fair Clustering Using Antidote Data »
Anshuman Chhabra · Adish Singla · Prasant Mohapatra -
2021 : Reinforcement Learning Under Algorithmic Triage »
Eleni Straitouri · Adish Singla · Vahid Balazadeh Meresht · Manuel Rodriguez -
2021 : Reward Poisoning in Reinforcement Learning: Attacks Against Unknown Learners in Unknown Environments »
Amin Rakhsha · Xuezhou Zhang · Jerry Zhu · Adish Singla -
2022 Poster: On Batch Teaching with Sample Complexity Bounded by VCD »
Farnam Mansouri · Hans Simon · Adish Singla · Sandra Zilles -
2022 Spotlight: On Batch Teaching with Sample Complexity Bounded by VCD »
Farnam Mansouri · Hans Simon · Adish Singla · Sandra Zilles -
2022 Poster: Envy-free Policy Teaching to Multiple Agents »
Jiarui Gan · R Majumdar · Adish Singla · Goran Radanovic -
2022 Poster: Provable Defense against Backdoor Policies in Reinforcement Learning »
Shubham Bharti · Xuezhou Zhang · Adish Singla · Jerry Zhu -
2021 : Fair Clustering Using Antidote Data »
Anshuman Chhabra · Adish Singla · Prasant Mohapatra -
2021 : Fairness Degrading Adversarial Attacks Against Clustering Algorithms »
Anshuman Chhabra · Adish Singla · Prasant Mohapatra -
2021 Poster: Curriculum Design for Teaching via Demonstrations: Theory and Applications »
Gaurav Yengera · Rati Devidze · Parameswaran Kamalaruban · Adish Singla -
2021 Poster: Explicable Reward Design for Reinforcement Learning Agents »
Rati Devidze · Goran Radanovic · Parameswaran Kamalaruban · Adish Singla -
2021 Poster: On Blame Attribution for Accountable Multi-Agent Sequential Decision Making »
Stelios Triantafyllou · Adish Singla · Goran Radanovic -
2021 Poster: Teaching an Active Learner with Contrastive Examples »
Chaoqi Wang · Adish Singla · Yuxin Chen -
2021 Poster: Teaching via Best-Case Counterexamples in the Learning-with-Equivalence-Queries Paradigm »
Akash Kumar · Yuxin Chen · Adish Singla -
2020 Poster: Synthesizing Tasks for Block-based Programming »
Umair Ahmed · Maria Christakis · Aleksandr Efremov · Nigel Fernandez · Ahana Ghosh · Abhik Roychoudhury · Adish Singla -
2020 Poster: Task-agnostic Exploration in Reinforcement Learning »
Xuezhou Zhang · Yuzhe Ma · Adish Singla -
2019 Poster: Teaching Multiple Concepts to a Forgetful Learner »
Anette Hunziker · Yuxin Chen · Oisin Mac Aodha · Manuel Gomez Rodriguez · Andreas Krause · Pietro Perona · Yisong Yue · Adish Singla -
2019 Poster: Preference-Based Batch and Sequential Teaching: Towards a Unified View of Models »
Farnam Mansouri · Yuxin Chen · Ara Vartanian · Jerry Zhu · Adish Singla -
2019 Poster: Learner-aware Teaching: Inverse Reinforcement Learning with Preferences and Constraints »
Sebastian Tschiatschek · Ahana Ghosh · Luis Haug · Rati Devidze · Adish Singla -
2018 : Assisted Inverse Reinforcement Learning »
Adish Singla · Rati Devidze -
2018 Poster: Understanding the Role of Adaptivity in Machine Teaching: The Case of Version Space Learners »
Yuxin Chen · Adish Singla · Oisin Mac Aodha · Pietro Perona · Yisong Yue -
2018 Poster: Teaching Inverse Reinforcement Learners via Features and Demonstrations »
Luis Haug · Sebastian Tschiatschek · Adish Singla -
2018 Poster: Enhancing the Accuracy and Fairness of Human Decision Making »
Isabel Valera · Adish Singla · Manuel Gomez Rodriguez