Timezone: »
Time series forecasting has been a widely explored task of great importance in many applications. However, it is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series. In this work, we propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder (BVAE) equipped with diffusion, denoise, and disentanglement, namely D3VAE. Specifically, a coupled diffusion probabilistic model is proposed to augment the time series data without increasing the aleatoric uncertainty and implement a more tractable inference process with BVAE. To ensure the generated series move toward the true target, we further propose to adapt and integrate the multiscale denoising score matching into the diffusion process for time series forecasting. In addition, to enhance the interpretability and stability of the prediction, we treat the latent variable in a multivariate manner and disentangle them on top of minimizing total correlation. Extensive experiments on synthetic and real-world data show that D3VAE outperforms competitive algorithms with remarkable margins. Our implementation is available at https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/D3VAE.
Author Information
Yan Li (Zhejiang University)
Xinjiang Lu (Baidu)
Yaqing Wang (Baidu Research)
Dejing Dou (Baidu)
More from the Same Authors
-
2021 Spotlight: Property-Aware Relation Networks for Few-Shot Molecular Property Prediction »
Yaqing Wang · Abulikemu Abuduweili · Quanming Yao · Dejing Dou -
2022 Poster: InterpretDL: Explaining Deep Models in PaddlePaddle »
Xuhong Li · Haoyi Xiong · Xingjian Li · Xuanyu Wu · Zeyu Chen · Dejing Dou -
2022 : SMILE: Sample-to-feature MIxup for Efficient Transfer LEarning »
Xingjian Li · Haoyi Xiong · Cheng-Zhong Xu · Dejing Dou -
2022 : A Simple Framework for Active Learning to Rank »
Qingzhong Wang · Haifang Li · Haoyi Xiong · Wen Wang · Jiang Bian · Yu Lu · Shuaiqiang Wang · zhicong cheng · Dawei Yin · Dejing Dou -
2022 : A Comparative Survey of Deep Active Learning »
Xueying Zhan · Qingzhong Wang · Kuan-Hao Huang · Haoyi Xiong · Dejing Dou · Antoni Chan -
2022 Spotlight: InterpretDL: Explaining Deep Models in PaddlePaddle »
Xuhong Li · Haoyi Xiong · Xingjian Li · Xuanyu Wu · Zeyu Chen · Dejing Dou -
2022 Spotlight: Lightning Talks 1A-1 »
Siba Smarak Panigrahi · Xuhong Li · Mikhail Usvyatsov · Shaohan Chen · Sohan Patnaik · Haoyi Xiong · Nikolaos V Sahinidis · Rafael Ballester-Ripoll · Chuanhou Gao · Xingjian Li · Konrad Schindler · Xuanyu Wu · Zeyu Chen · Dejing Dou -
2022 Poster: AutoMS: Automatic Model Selection for Novelty Detection with Error Rate Control »
Yifan Zhang · Haiyan Jiang · Haojie Ren · Changliang Zou · Dejing Dou -
2021 : [O6] Explaining Information Flow Inside Vision Transformers Using Markov Chain »
Tingyi Yuan · Xuhong Li · Haoyi Xiong · Dejing Dou -
2021 Poster: Property-Aware Relation Networks for Few-Shot Molecular Property Prediction »
Yaqing Wang · Abulikemu Abuduweili · Quanming Yao · Dejing Dou -
2020 Poster: Discriminative Sounding Objects Localization via Self-supervised Audiovisual Matching »
Di Hu · Rui Qian · Minyue Jiang · Xiao Tan · Shilei Wen · Errui Ding · Weiyao Lin · Dejing Dou