Timezone: »

Controlled Sparsity via Constrained Optimization or: How I Learned to Stop Tuning Penalties and Love Constraints
Jose Gallego-Posada · Juan Ramirez · Akram Erraqabi · Yoshua Bengio · Simon Lacoste-Julien

Thu Dec 01 02:00 PM -- 04:00 PM (PST) @ Hall J #123

The performance of trained neural networks is robust to harsh levels of pruning. Coupled with the ever-growing size of deep learning models, this observation has motivated extensive research on learning sparse models. In this work, we focus on the task of controlling the level of sparsity when performing sparse learning. Existing methods based on sparsity-inducing penalties involve expensive trial-and-error tuning of the penalty factor, thus lacking direct control of the resulting model sparsity. In response, we adopt a constrained formulation: using the gate mechanism proposed by Louizos et al. (2018), we formulate a constrained optimization problem where sparsification is guided by the training objective and the desired sparsity target in an end-to-end fashion. Experiments on CIFAR-{10, 100}, TinyImageNet, and ImageNet using WideResNet and ResNet{18, 50} models validate the effectiveness of our proposal and demonstrate that we can reliably achieve pre-determined sparsity targets without compromising on predictive performance.

Author Information

Jose Gallego-Posada (Mila, Université de Montréal)
Juan Ramirez (Mila)
Akram Erraqabi (Mila / UdeM)
Yoshua Bengio (Mila / U. Montreal)

Yoshua Bengio is Full Professor in the computer science and operations research department at U. Montreal, scientific director and founder of Mila and of IVADO, Turing Award 2018 recipient, Canada Research Chair in Statistical Learning Algorithms, as well as a Canada AI CIFAR Chair. He pioneered deep learning and has been getting the most citations per day in 2018 among all computer scientists, worldwide. He is an officer of the Order of Canada, member of the Royal Society of Canada, was awarded the Killam Prize, the Marie-Victorin Prize and the Radio-Canada Scientist of the year in 2017, and he is a member of the NeurIPS advisory board and co-founder of the ICLR conference, as well as program director of the CIFAR program on Learning in Machines and Brains. His goal is to contribute to uncover the principles giving rise to intelligence through learning, as well as favour the development of AI for the benefit of all.

Simon Lacoste-Julien (Mila, Université de Montréal & SAIL Montreal)

Simon Lacoste-Julien is an associate professor at Mila and DIRO from Université de Montréal, and Canada CIFAR AI Chair holder. He also heads part time the SAIT AI Lab Montreal from Samsung. His research interests are machine learning and applied math, with applications in related fields like computer vision and natural language processing. He obtained a B.Sc. in math., physics and computer science from McGill, a PhD in computer science from UC Berkeley and a post-doc from the University of Cambridge. He spent a few years as a research faculty at INRIA and École normale supérieure in Paris before coming back to his roots in Montreal in 2016 to answer the call from Yoshua Bengio in growing the Montreal AI ecosystem.

More from the Same Authors