Timezone: »
Poster
Operator Splitting Value Iteration
Amin Rakhsha · Andrew Wang · Mohammad Ghavamzadeh · Amir-massoud Farahmand
We introduce new planning and reinforcement learning algorithms for discounted MDPs that utilize an approximate model of the environment to accelerate the convergence of the value function. Inspired by the splitting approach in numerical linear algebra, we introduce \emph{Operator Splitting Value Iteration} (OS-VI) for both Policy Evaluation and Control problems. OS-VI achieves a much faster convergence rate when the model is accurate enough. We also introduce a sample-based version of the algorithm called OS-Dyna. Unlike the traditional Dyna architecture, OS-Dyna still converges to the correct value function in presence of model approximation error.
Author Information
Amin Rakhsha (University of Toronto)
Andrew Wang (University of Toronto)
Mohammad Ghavamzadeh (Google Research)
Amir-massoud Farahmand (Vector Institute and University of Toronto)
More from the Same Authors
-
2021 : Reward Poisoning in Reinforcement Learning: Attacks Against Unknown Learners in Unknown Environments »
Amin Rakhsha · Xuezhou Zhang · Jerry Zhu · Adish Singla -
2021 : Reward Poisoning in Reinforcement Learning: Attacks Against Unknown Learners in Unknown Environments »
Amin Rakhsha · Xuezhou Zhang · Jerry Zhu · Adish Singla -
2022 : A Mixture-of-Expert Approach to RL-based Dialogue Management »
Yinlam Chow · Azamat Tulepbergenov · Ofir Nachum · Dhawal Gupta · Moonkyung Ryu · Mohammad Ghavamzadeh · Craig Boutilier -
2022 Poster: Private and Communication-Efficient Algorithms for Entropy Estimation »
Gecia Bravo-Hermsdorff · RĂ³bert Busa-Fekete · Mohammad Ghavamzadeh · Andres Munoz Medina · Umar Syed -
2022 Poster: Robust Reinforcement Learning using Offline Data »
Kishan Panaganti · Zaiyan Xu · Dileep Kalathil · Mohammad Ghavamzadeh -
2022 Poster: Efficient Risk-Averse Reinforcement Learning »
Ido Greenberg · Yinlam Chow · Mohammad Ghavamzadeh · Shie Mannor -
2021 Poster: Adaptive Sampling for Minimax Fair Classification »
Shubhanshu Shekhar · Greg Fields · Mohammad Ghavamzadeh · Tara Javidi -
2020 Poster: An implicit function learning approach for parametric modal regression »
Yangchen Pan · Ehsan Imani · Amir-massoud Farahmand · Martha White -
2020 Poster: Online Planning with Lookahead Policies »
Yonathan Efroni · Mohammad Ghavamzadeh · Shie Mannor -
2020 Session: Orals & Spotlights Track 09: Reinforcement Learning »
Pulkit Agrawal · Mohammad Ghavamzadeh -
2019 Poster: Value Function in Frequency Domain and the Characteristic Value Iteration Algorithm »
Amir-massoud Farahmand -
2018 Poster: Iterative Value-Aware Model Learning »
Amir-massoud Farahmand