Timezone: »
Current work in object-centric learning has been motivated by developing learning algorithms that infer independent and symmetric entities from the perceptual input. This often requires the use iterative refinement procedures that break symmetries among equally plausible explanations for the data, but most prior works differentiate through the unrolled refinement process, which can make optimization exceptionally challenging. In this work, we observe that such iterative refinement methods can be made differentiable by means of the implicit function theorem, and develop an implicit differentiation approach that improves the stability and tractability of training such models by decoupling the forward and backward passes. This connection enables us to apply recent advances in optimizing implicit layers to not only improve the stability and optimization of the slot attention module in SLATE, a state-of-the-art method for learning entity representations, but do so with constant space and time complexity in backpropagation and only one additional line of code.
Author Information
Michael Chang (University of California, Berkeley)
Ph.D. student at Berkeley AI Research, U.C. Berkeley B.S. in Computer Science from MIT Former research intern under Juergen Schmidhuber, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA) Former undergraduate researcher under Joshua Tenenbaum and Antonio Torralba, MIT
Tom Griffiths (Princeton University)
Sergey Levine (UC Berkeley)
More from the Same Authors
-
2021 Spotlight: Robust Predictable Control »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 Spotlight: Offline Reinforcement Learning as One Big Sequence Modeling Problem »
Michael Janner · Qiyang Li · Sergey Levine -
2021 Spotlight: Pragmatic Image Compression for Human-in-the-Loop Decision-Making »
Sid Reddy · Anca Dragan · Sergey Levine -
2021 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa · Pang Wei Koh · Tony Lee · Irena Gao · Sang Michael Xie · Kendrick Shen · Ananya Kumar · Weihua Hu · Michihiro Yasunaga · Henrik Marklund · Sara Beery · Ian Stavness · Jure Leskovec · Kate Saenko · Tatsunori Hashimoto · Sergey Levine · Chelsea Finn · Percy Liang -
2021 : Test Time Robustification of Deep Models via Adaptation and Augmentation »
Marvin Zhang · Sergey Levine · Chelsea Finn -
2021 : Value Function Spaces: Skill-Centric State Abstractions for Long-Horizon Reasoning »
Dhruv Shah · Ted Xiao · Alexander Toshev · Sergey Levine · brian ichter -
2021 : Data Sharing without Rewards in Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Chelsea Finn · Sergey Levine · Karol Hausman -
2021 : Should I Run Offline Reinforcement Learning or Behavioral Cloning? »
Aviral Kumar · Joey Hong · Anikait Singh · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : Offline Reinforcement Learning with In-sample Q-Learning »
Ilya Kostrikov · Ashvin Nair · Sergey Levine -
2021 : C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks »
Tianjun Zhang · Ben Eysenbach · Russ Salakhutdinov · Sergey Levine · Joseph Gonzalez -
2021 : The Information Geometry of Unsupervised Reinforcement Learning »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 : Mismatched No More: Joint Model-Policy Optimization for Model-Based RL »
Ben Eysenbach · Alexander Khazatsky · Sergey Levine · Russ Salakhutdinov -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Hybrid Imitative Planning with Geometric and Predictive Costs in Offroad Environments »
Daniel Shin · Dhruv Shah · Ali Agha · Nicholas Rhinehart · Sergey Levine -
2021 : CoMPS: Continual Meta Policy Search »
Glen Berseth · Zhiwei Zhang · Grace Zhang · Chelsea Finn · Sergey Levine -
2021 : Meta-learning inductive biases of learning systems with Gaussian processes »
Michael Li · Erin Grant · Tom Griffiths -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 : Pre-Training for Robots: Leveraging Diverse Multitask Data via Offline Reinforcement Learning »
Aviral Kumar · Anikait Singh · Frederik Ebert · Yanlai Yang · Chelsea Finn · Sergey Levine -
2022 : Offline Reinforcement Learning from Heteroskedastic Data Via Support Constraints »
Anikait Singh · Aviral Kumar · Quan Vuong · Yevgen Chebotar · Sergey Levine -
2022 : Skill Acquisition by Instruction Augmentation on Offline Datasets »
Ted Xiao · Harris Chan · Pierre Sermanet · Ayzaan Wahid · Anthony Brohan · Karol Hausman · Sergey Levine · Jonathan Tompson -
2022 : How to talk so AI will learn: instructions, descriptions, and pragmatics »
Theodore Sumers · Robert Hawkins · Mark Ho · Tom Griffiths · Dylan Hadfield-Menell -
2022 : Bitrate-Constrained DRO: Beyond Worst Case Robustness To Unknown Group Shifts »
Amrith Setlur · Don Dennis · Benjamin Eysenbach · Aditi Raghunathan · Chelsea Finn · Virginia Smith · Sergey Levine -
2022 : Confidence-Conditioned Value Functions for Offline Reinforcement Learning »
Joey Hong · Aviral Kumar · Sergey Levine -
2022 : Efficient Deep Reinforcement Learning Requires Regulating Statistical Overfitting »
Qiyang Li · Aviral Kumar · Ilya Kostrikov · Sergey Levine -
2022 : Contrastive Example-Based Control »
Kyle Hatch · Sarthak J Shetty · Benjamin Eysenbach · Tianhe Yu · Rafael Rafailov · Russ Salakhutdinov · Sergey Levine · Chelsea Finn -
2022 : Offline Reinforcement Learning for Customizable Visual Navigation »
Dhruv Shah · Arjun Bhorkar · Hrishit Leen · Ilya Kostrikov · Nicholas Rhinehart · Sergey Levine -
2022 : A Connection between One-Step Regularization and Critic Regularization in Reinforcement Learning »
Benjamin Eysenbach · Matthieu Geist · Sergey Levine · Russ Salakhutdinov -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Confidence-Conditioned Value Functions for Offline Reinforcement Learning »
Joey Hong · Aviral Kumar · Sergey Levine -
2022 : Efficient Deep Reinforcement Learning Requires Regulating Statistical Overfitting »
Qiyang Li · Aviral Kumar · Ilya Kostrikov · Sergey Levine -
2022 : Pre-Training for Robots: Leveraging Diverse Multitask Data via Offline Reinforcement Learning »
Anikait Singh · Aviral Kumar · Frederik Ebert · Yanlai Yang · Chelsea Finn · Sergey Levine -
2022 : Offline Reinforcement Learning from Heteroskedastic Data Via Support Constraints »
Anikait Singh · Aviral Kumar · Quan Vuong · Yevgen Chebotar · Sergey Levine -
2022 : Adversarial Policies Beat Professional-Level Go AIs »
Tony Wang · Adam Gleave · Nora Belrose · Tom Tseng · Michael Dennis · Yawen Duan · Viktor Pogrebniak · Joseph Miller · Sergey Levine · Stuart J Russell -
2022 : Contrastive Example-Based Control »
Kyle Hatch · Sarthak J Shetty · Benjamin Eysenbach · Tianhe Yu · Rafael Rafailov · Russ Salakhutdinov · Sergey Levine · Chelsea Finn -
2022 : PnP-Nav: Plug-and-Play Policies for Generalizable Visual Navigation Across Robots »
Dhruv Shah · Ajay Sridhar · Arjun Bhorkar · Noriaki Hirose · Sergey Levine -
2022 : Offline Reinforcement Learning for Customizable Visual Navigation »
Dhruv Shah · Arjun Bhorkar · Hrishit Leen · Ilya Kostrikov · Nicholas Rhinehart · Sergey Levine -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : A Connection between One-Step Regularization and Critic Regularization in Reinforcement Learning »
Benjamin Eysenbach · Matthieu Geist · Russ Salakhutdinov · Sergey Levine -
2022 : Simplifying Model-based RL: Learning Representations, Latent-space Models, and Policies with One Objective »
Raj Ghugare · Homanga Bharadhwaj · Benjamin Eysenbach · Sergey Levine · Ruslan Salakhutdinov -
2022 : On the informativeness of supervision signals »
Ilia Sucholutsky · Raja Marjieh · Tom Griffiths -
2023 Poster: ReDS: Offline RL With Heteroskedastic Datasets via Support Constraints »
Anikait Singh · Aviral Kumar · Quan Vuong · Yevgen Chebotar · Sergey Levine -
2023 Poster: Ignorance is Bliss: Robust Control via Information Gating »
Manan Tomar · Riashat Islam · Matthew Taylor · Sergey Levine · Philip Bachman -
2023 Poster: Learning to Influence Human Behavior with Offline Reinforcement Learning »
Joey Hong · Sergey Levine · Anca Dragan -
2023 Poster: Offline Goal-Conditioned RL with Latent States as Actions »
Seohong Park · Dibya Ghosh · Benjamin Eysenbach · Sergey Levine -
2023 Poster: Grounded Decoding: Guiding Text Generation with Grounded Models for Robot Control »
Wenlong Huang · Fei Xia · Dhruv Shah · Danny Driess · Andy Zeng · Yao Lu · Pete Florence · Igor Mordatch · Sergey Levine · Karol Hausman · brian ichter -
2023 Poster: Accelerating Exploration with Unlabeled Prior Data »
Qiyang Li · Jason Zhang · Dibya Ghosh · Amy Zhang · Sergey Levine -
2023 Poster: Alignment with human representations supports robust few-shot learning »
Ilia Sucholutsky · Tom Griffiths -
2023 Poster: Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning »
Mitsuhiko Nakamoto · Yuexiang Zhai · Anikait Singh · Max Sobol Mark · Yi Ma · Chelsea Finn · Aviral Kumar · Sergey Levine -
2023 Poster: Tree of Thoughts: Deliberate Problem Solving with Large Language Models »
Shunyu Yao · Dian Yu · Jeffrey Zhao · Izhak Shafran · Tom Griffiths · Yuan Cao · Karthik Narasimhan -
2023 Poster: Im-Promptu: In-Context Composition from Image Prompts »
Bhishma Dedhia · Michael Chang · Jake Snell · Tom Griffiths · Niraj Jha -
2023 Poster: Gaussian Process Probes (GPP) for Uncertainty-Aware Probing »
Alexander Ku · Zi Wang · Jason Baldridge · Tom Griffiths · Been Kim -
2023 Oral: Tree of Thoughts: Deliberate Problem Solving with Large Language Models »
Shunyu Yao · Dian Yu · Jeffrey Zhao · Izhak Shafran · Tom Griffiths · Yuan Cao · Karthik Narasimhan -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 : On the informativeness of supervision signals »
Ilia Sucholutsky · Raja Marjieh · Tom Griffiths -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 Workshop: Shared Visual Representations in Human and Machine Intelligence (SVRHM) »
Arturo Deza · Joshua Peterson · N Apurva Ratan Murty · Tom Griffiths -
2022 Poster: MEMO: Test Time Robustness via Adaptation and Augmentation »
Marvin Zhang · Sergey Levine · Chelsea Finn -
2022 Poster: First Contact: Unsupervised Human-Machine Co-Adaptation via Mutual Information Maximization »
Siddharth Reddy · Sergey Levine · Anca Dragan -
2022 Poster: Using natural language and program abstractions to instill human inductive biases in machines »
Sreejan Kumar · Carlos G. Correa · Ishita Dasgupta · Raja Marjieh · Michael Y Hu · Robert Hawkins · Jonathan D Cohen · nathaniel daw · Karthik Narasimhan · Tom Griffiths -
2022 Poster: DASCO: Dual-Generator Adversarial Support Constrained Offline Reinforcement Learning »
Quan Vuong · Aviral Kumar · Sergey Levine · Yevgen Chebotar -
2022 Poster: Adversarial Unlearning: Reducing Confidence Along Adversarial Directions »
Amrith Setlur · Benjamin Eysenbach · Virginia Smith · Sergey Levine -
2022 Poster: Mismatched No More: Joint Model-Policy Optimization for Model-Based RL »
Benjamin Eysenbach · Alexander Khazatsky · Sergey Levine · Russ Salakhutdinov -
2022 Poster: Unpacking Reward Shaping: Understanding the Benefits of Reward Engineering on Sample Complexity »
Abhishek Gupta · Aldo Pacchiano · Yuexiang Zhai · Sham Kakade · Sergey Levine -
2022 Poster: Distributionally Adaptive Meta Reinforcement Learning »
Anurag Ajay · Abhishek Gupta · Dibya Ghosh · Sergey Levine · Pulkit Agrawal -
2022 Poster: How to talk so AI will learn: Instructions, descriptions, and autonomy »
Theodore Sumers · Robert Hawkins · Mark Ho · Tom Griffiths · Dylan Hadfield-Menell -
2022 Poster: You Only Live Once: Single-Life Reinforcement Learning »
Annie Chen · Archit Sharma · Sergey Levine · Chelsea Finn -
2022 Poster: Data-Driven Offline Decision-Making via Invariant Representation Learning »
Han Qi · Yi Su · Aviral Kumar · Sergey Levine -
2022 Poster: Contrastive Learning as Goal-Conditioned Reinforcement Learning »
Benjamin Eysenbach · Tianjun Zhang · Sergey Levine · Russ Salakhutdinov -
2022 Poster: Imitating Past Successes can be Very Suboptimal »
Benjamin Eysenbach · Soumith Udatha · Russ Salakhutdinov · Sergey Levine -
2021 : Reinforcement learning: It's all in the mind »
Tom Griffiths -
2021 Workshop: Workshop on Human and Machine Decisions »
Daniel Reichman · Joshua Peterson · Kiran Tomlinson · Annie Liang · Tom Griffiths -
2021 : Opening remarks »
Tom Griffiths -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision Q&A »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : Exploring the Structure of Human Adjective Representations »
Karan Grewal · Joshua Peterson · Bill Thompson · Tom Griffiths -
2021 : Invited Talk 4 »
Tom Griffiths -
2021 Workshop: Shared Visual Representations in Human and Machine Intelligence »
Arturo Deza · Joshua Peterson · N Apurva Ratan Murty · Tom Griffiths -
2021 Oral: Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification »
Ben Eysenbach · Sergey Levine · Russ Salakhutdinov -
2021 Oral: Passive attention in artificial neural networks predicts human visual selectivity »
Thomas Langlois · Haicheng Zhao · Erin Grant · Ishita Dasgupta · Tom Griffiths · Nori Jacoby -
2021 Poster: Robust Predictable Control »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 Poster: Which Mutual-Information Representation Learning Objectives are Sufficient for Control? »
Kate Rakelly · Abhishek Gupta · Carlos Florensa · Sergey Levine -
2021 Poster: COMBO: Conservative Offline Model-Based Policy Optimization »
Tianhe Yu · Aviral Kumar · Rafael Rafailov · Aravind Rajeswaran · Sergey Levine · Chelsea Finn -
2021 Poster: Outcome-Driven Reinforcement Learning via Variational Inference »
Tim G. J. Rudner · Vitchyr Pong · Rowan McAllister · Yarin Gal · Sergey Levine -
2021 Poster: Bayesian Adaptation for Covariate Shift »
Aurick Zhou · Sergey Levine -
2021 Poster: Offline Reinforcement Learning as One Big Sequence Modeling Problem »
Michael Janner · Qiyang Li · Sergey Levine -
2021 Poster: Pragmatic Image Compression for Human-in-the-Loop Decision-Making »
Sid Reddy · Anca Dragan · Sergey Levine -
2021 Poster: Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification »
Ben Eysenbach · Sergey Levine · Russ Salakhutdinov -
2021 Poster: Information is Power: Intrinsic Control via Information Capture »
Nicholas Rhinehart · Jenny Wang · Glen Berseth · John Co-Reyes · Danijar Hafner · Chelsea Finn · Sergey Levine -
2021 Poster: Conservative Data Sharing for Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2021 Poster: Passive attention in artificial neural networks predicts human visual selectivity »
Thomas Langlois · Haicheng Zhao · Erin Grant · Ishita Dasgupta · Tom Griffiths · Nori Jacoby -
2021 Poster: Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability »
Dibya Ghosh · Jad Rahme · Aviral Kumar · Amy Zhang · Ryan Adams · Sergey Levine -
2021 Poster: Autonomous Reinforcement Learning via Subgoal Curricula »
Archit Sharma · Abhishek Gupta · Sergey Levine · Karol Hausman · Chelsea Finn -
2021 Poster: Adaptive Risk Minimization: Learning to Adapt to Domain Shift »
Marvin Zhang · Henrik Marklund · Nikita Dhawan · Abhishek Gupta · Sergey Levine · Chelsea Finn -
2020 Workshop: Shared Visual Representations in Human and Machine Intelligence (SVRHM) »
Arturo Deza · Joshua Peterson · N Apurva Ratan Murty · Tom Griffiths -
2020 Workshop: Object Representations for Learning and Reasoning »
William Agnew · Rim Assouel · Michael Chang · Antonia Creswell · Eliza Kosoy · Aravind Rajeswaran · Sjoerd van Steenkiste -
2019 : Concluding Remarks & Prizes Ceremony »
Arturo Deza · Joshua Peterson · Apurva Ratan Murty · Tom Griffiths -
2019 : Tom Griffiths »
Tom Griffiths -
2019 : Poster Session »
Ethan Harris · Tom White · Oh Hyeon Choung · Takashi Shinozaki · Dipan Pal · Katherine L. Hermann · Judy Borowski · Camilo Fosco · Chaz Firestone · Vijay Veerabadran · Benjamin Lahner · Chaitanya Ryali · Fenil Doshi · Pulkit Singh · Sharon Zhou · Michel Besserve · Michael Chang · Anelise Newman · Mahesan Niranjan · Jonathon Hare · Daniela Mihai · Marios Savvides · Simon Kornblith · Christina M Funke · Aude Oliva · Virginia de Sa · Dmitry Krotov · Colin Conwell · George Alvarez · Alex Kolchinski · Shengjia Zhao · Mitchell Gordon · Michael Bernstein · Stefano Ermon · Arash Mehrjou · Bernhard Schölkopf · John Co-Reyes · Michael Janner · Jiajun Wu · Josh Tenenbaum · Sergey Levine · Yalda Mohsenzadeh · Zhenglong Zhou -
2019 : Spotlights 1 »
Michael Chang · Jan Chorowski · Matthew Dirks -
2019 : Opening Remarks »
Arturo Deza · Joshua Peterson · Apurva Ratan Murty · Tom Griffiths -
2019 Workshop: Shared Visual Representations in Human and Machine Intelligence »
Arturo Deza · Joshua Peterson · Apurva Ratan Murty · Tom Griffiths -
2019 Poster: MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies »
Xue Bin Peng · Michael Chang · Grace Zhang · Pieter Abbeel · Sergey Levine -
2019 Poster: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2019 Spotlight: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2019 Poster: On the Utility of Learning about Humans for Human-AI Coordination »
Micah Carroll · Rohin Shah · Mark Ho · Tom Griffiths · Sanjit Seshia · Pieter Abbeel · Anca Dragan -
2018 : Lunch & Posters »
Haytham Fayek · German Parisi · Brian Xu · Pramod Kaushik Mudrakarta · Sophie Cerf · Sarah Wassermann · Davit Soselia · Rahaf Aljundi · Mohamed Elhoseiny · Frantzeska Lavda · Kevin J Liang · Arslan Chaudhry · Sanmit Narvekar · Vincenzo Lomonaco · Wesley Chung · Michael Chang · Ying Zhao · Zsolt Kira · Pouya Bashivan · Banafsheh Rafiee · Oleksiy Ostapenko · Andrew Jones · Christos Kaplanis · Sinan Kalkan · Dan Teng · Xu He · Vincent Liu · Somjit Nath · Sungsoo Ahn · Ting Chen · Shenyang Huang · Yash Chandak · Nathan Sprague · Martin Schrimpf · Tony Kendall · Jonathan Richard Schwarz · Michael Li · Yunshu Du · Yen-Chang Hsu · Samira Abnar · Bo Wang