Timezone: »
A striking observation about iterative magnitude pruning (IMP; Frankle et al. 2020) is that—after just a few hundred steps of dense training—the method can find a sparse sub-network that can be trained to the same accuracy as the dense network. However, the same does not hold at step 0, i.e. random initialization. In this work, we seek to understand how this early phase of pre-training leads to a good initialization for IMP both through the lens of the data distribution and the loss landscape geometry. Empirically we observe that, holding the number of pre-training iterations constant, training on a small fraction of (randomly chosen) data suffices to obtain an equally good initialization for IMP. We additionally observe that by pre-training only on "easy" training data, we can decrease the number of steps necessary to find a good initialization for IMP compared to training on the full dataset or a randomly chosen subset. Finally, we identify novel properties of the loss landscape of dense networks that are predictive of IMP performance, showing in particular that more examples being linearly mode connected in the dense network correlates well with good initializations for IMP. Combined, these results provide new insight into the role played by the early phase training in IMP.
Author Information
Mansheej Paul (Stanford University)
Brett Larsen (Flatiron Institute)
Surya Ganguli (Stanford)
Jonathan Frankle (School of Engineering and Applied Sciences, Harvard University)
Gintare Karolina Dziugaite (Google Research, Brain Team)
More from the Same Authors
-
2021 Spotlight: Towards a Unified Information-Theoretic Framework for Generalization »
Mahdi Haghifam · Gintare Karolina Dziugaite · Shay Moran · Dan Roy -
2021 : Stochastic Pruning: Fine-Tuning, and PAC-Bayes bound optimization »
Soufiane Hayou · Bobby He · Gintare Karolina Dziugaite -
2021 : The Dynamics of Functional Diversity throughout Neural Network Training »
Lee Zamparo · Marc-Etienne Brunet · Thomas George · Sepideh Kharaghani · Gintare Karolina Dziugaite -
2022 : Unmasking the Lottery Ticket Hypothesis: Efficient Adaptive Pruning for Finding Winning Tickets »
Mansheej Paul · Feng Chen · Brett Larsen · Jonathan Frankle · Surya Ganguli · Gintare Karolina Dziugaite -
2022 : The Effect of Data Dimensionality on Neural Network Prunability »
Zachary Ankner · Alex Renda · Gintare Karolina Dziugaite · Jonathan Frankle · Tian Jin -
2022 Poster: Beyond neural scaling laws: beating power law scaling via data pruning »
Ben Sorscher · Robert Geirhos · Shashank Shekhar · Surya Ganguli · Ari Morcos -
2022 Poster: Pruning’s Effect on Generalization Through the Lens of Training and Regularization »
Tian Jin · Michael Carbin · Dan Roy · Jonathan Frankle · Gintare Karolina Dziugaite -
2021 : Session 3 | Invited talk: Surya Ganguli, "From the geometry of high dimensional energy landscapes to optimal annealing in a dissipative many body quantum optimizer" »
Surya Ganguli · Atilim Gunes Baydin -
2021 Poster: Deep Learning on a Data Diet: Finding Important Examples Early in Training »
Mansheej Paul · Surya Ganguli · Gintare Karolina Dziugaite -
2021 Poster: Towards a Unified Information-Theoretic Framework for Generalization »
Mahdi Haghifam · Gintare Karolina Dziugaite · Shay Moran · Dan Roy -
2020 : Keynote 5: Gintare Karolina Dziugaite »
Gintare Karolina Dziugaite -
2020 Poster: Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel »
Stanislav Fort · Gintare Karolina Dziugaite · Mansheej Paul · Sepideh Kharaghani · Daniel Roy · Surya Ganguli -
2020 Poster: Predictive coding in balanced neural networks with noise, chaos and delays »
Jonathan Kadmon · Jonathan Timcheck · Surya Ganguli -
2020 Poster: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Spotlight: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Poster: Sharpened Generalization Bounds based on Conditional Mutual Information and an Application to Noisy, Iterative Algorithms »
Mahdi Haghifam · Jeffrey Negrea · Ashish Khisti · Daniel Roy · Gintare Karolina Dziugaite -
2020 Poster: In search of robust measures of generalization »
Gintare Karolina Dziugaite · Alexandre Drouin · Brady Neal · Nitarshan Rajkumar · Ethan Caballero · Linbo Wang · Ioannis Mitliagkas · Daniel Roy -
2020 Poster: Pruning neural networks without any data by iteratively conserving synaptic flow »
Hidenori Tanaka · Daniel Kunin · Daniel Yamins · Surya Ganguli -
2019 : Panel Session: A new hope for neuroscience »
Yoshua Bengio · Blake Richards · Timothy Lillicrap · Ila Fiete · David Sussillo · Doina Precup · Konrad Kording · Surya Ganguli -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Panel - The Role of Communication at Large: Aparna Lakshmiratan, Jason Yosinski, Been Kim, Surya Ganguli, Finale Doshi-Velez »
Aparna Lakshmiratan · Finale Doshi-Velez · Surya Ganguli · Zachary Lipton · Michela Paganini · Anima Anandkumar · Jason Yosinski -
2019 : Invited Talk: Theories for the emergence of internal representations in neural networks: from perception to navigation »
Surya Ganguli -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Keun Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 : Surya Ganguli, Yasaman Bahri, Florent Krzakala moderated by Lenka Zdeborova »
Florent Krzakala · Yasaman Bahri · Surya Ganguli · Lenka Zdeborová · Adji Bousso Dieng · Joan Bruna -
2019 : Surya Ganguli - An analytic theory of generalization dynamics and transfer learning in deep linear networks »
Surya Ganguli -
2019 Workshop: Machine Learning with Guarantees »
Ben London · Gintare Karolina Dziugaite · Daniel Roy · Thorsten Joachims · Aleksander Madry · John Shawe-Taylor -
2019 Poster: Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates »
Jeffrey Negrea · Mahdi Haghifam · Gintare Karolina Dziugaite · Ashish Khisti · Daniel Roy -
2019 Poster: A unified theory for the origin of grid cells through the lens of pattern formation »
Ben Sorscher · Gabriel Mel · Surya Ganguli · Samuel Ocko -
2019 Poster: Universality and individuality in neural dynamics across large populations of recurrent networks »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo -
2019 Spotlight: A unified theory for the origin of grid cells through the lens of pattern formation »
Ben Sorscher · Gabriel Mel · Surya Ganguli · Samuel Ocko -
2019 Spotlight: Universality and individuality in neural dynamics across large populations of recurrent networks »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo -
2019 Poster: From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction »
Hidenori Tanaka · Aran Nayebi · Niru Maheswaranathan · Lane McIntosh · Stephen Baccus · Surya Ganguli -
2019 Poster: Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo -
2018 Poster: The emergence of multiple retinal cell types through efficient coding of natural movies »
Samuel Ocko · Jack Lindsey · Surya Ganguli · Stephane Deny -
2018 Poster: Statistical mechanics of low-rank tensor decomposition »
Jonathan Kadmon · Surya Ganguli -
2018 Poster: Data-dependent PAC-Bayes priors via differential privacy »
Gintare Karolina Dziugaite · Daniel Roy -
2018 Poster: Task-Driven Convolutional Recurrent Models of the Visual System »
Aran Nayebi · Daniel Bear · Jonas Kubilius · Kohitij Kar · Surya Ganguli · David Sussillo · James J DiCarlo · Daniel Yamins -
2017 Poster: Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net »
Anirudh Goyal · Nan Rosemary Ke · Surya Ganguli · Yoshua Bengio -
2017 Poster: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice »
Jeffrey Pennington · Samuel Schoenholz · Surya Ganguli -
2016 : Surya Ganguli : Deep Neural Models of the Retinal Response to Natural Stimuli »
Surya Ganguli -
2016 : Non-convexity in the error landscape and the expressive capacity of deep neural networks »
Surya Ganguli -
2016 Poster: Exponential expressivity in deep neural networks through transient chaos »
Ben Poole · Subhaneil Lahiri · Maithra Raghu · Jascha Sohl-Dickstein · Surya Ganguli -
2016 Poster: An equivalence between high dimensional Bayes optimal inference and M-estimation »
Madhu Advani · Surya Ganguli -
2016 Poster: Deep Learning Models of the Retinal Response to Natural Scenes »
Lane McIntosh · Niru Maheswaranathan · Aran Nayebi · Surya Ganguli · Stephen Baccus -
2015 Poster: Deep Knowledge Tracing »
Chris Piech · Jonathan Bassen · Jonathan Huang · Surya Ganguli · Mehran Sahami · Leonidas Guibas · Jascha Sohl-Dickstein -
2014 Workshop: Deep Learning and Representation Learning »
Andrew Y Ng · Yoshua Bengio · Adam Coates · Roland Memisevic · Sharanyan Chetlur · Geoffrey E Hinton · Shamim Nemati · Bryan Catanzaro · Surya Ganguli · Herbert Jaeger · Phil Blunsom · Leon Bottou · Volodymyr Mnih · Chen-Yu Lee · Rich M Schwartz -
2014 Poster: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization »
Yann N Dauphin · Razvan Pascanu · Caglar Gulcehre · Kyunghyun Cho · Surya Ganguli · Yoshua Bengio -
2013 Poster: A memory frontier for complex synapses »
Subhaneil Lahiri · Surya Ganguli -
2013 Oral: A memory frontier for complex synapses »
Subhaneil Lahiri · Surya Ganguli -
2010 Poster: Short-term memory in neuronal networks through dynamical compressed sensing »
Surya Ganguli · Haim Sompolinsky