Timezone: »
Poster
Subgroup Robustness Grows On Trees: An Empirical Baseline Investigation
Josh Gardner · Zoran Popovic · Ludwig Schmidt
Researchers have proposed many methods for fair and robust machine learning, but comprehensive empirical evaluation of their subgroup robustness is lacking. In this work, we address this gap in the context of tabular data, where sensitive subgroups are clearly-defined, real-world fairness problems abound, and prior works often do not compare to state-of-the-art tree-based models as baselines. We conduct an empirical comparison of several previously-proposed methods for fair and robust learning alongside state-of-the-art tree-based methods and other baselines. Via experiments with more than $340{,}000$ model configurations on eight datasets, we show that tree-based methods have strong subgroup robustness, even when compared to robustness- and fairness-enhancing methods. Moreover, the best tree-based models tend to show good performance over a range of metrics, while robust or group-fair models can show brittleness, with significant performance differences across different metrics for a fixed model. We also demonstrate that tree-based models show less sensitivity to hyperparameter configurations, and are less costly to train. Our work suggests that tree-based ensemble models make an effective baseline for tabular data, and are a sensible default when subgroup robustness is desired. See https://github.com/jpgard/subgroup-robustness-grows-on-trees for code to reproduce our experiments and detailed experimental results.
Author Information
Josh Gardner (University of Washington)
Zoran Popovic (University of Washington)
Ludwig Schmidt (University of Washington)
More from the Same Authors
-
2021 : Are We Learning Yet? A Meta Review of Evaluation Failures Across Machine Learning »
Thomas Liao · Rohan Taori · Deborah Raji · Ludwig Schmidt -
2021 : Do ImageNet Classifiers Generalize to ImageNet? »
Benjamin Recht · Becca Roelofs · Ludwig Schmidt · Vaishaal Shankar -
2021 : Evaluating Machine Accuracy on ImageNet »
Vaishaal Shankar · Becca Roelofs · Horia Mania · Benjamin Recht · Ludwig Schmidt -
2021 : Measuring Robustness to Natural Distribution Shifts in Image Classification »
Rohan Taori · Achal Dave · Vaishaal Shankar · Nicholas Carlini · Benjamin Recht · Ludwig Schmidt -
2021 : Robust fine-tuning of zero-shot models »
Mitchell Wortsman · Gabriel Ilharco · Jong Wook Kim · Mike Li · Hanna Hajishirzi · Ali Farhadi · Hongseok Namkoong · Ludwig Schmidt -
2022 Poster: Patching open-vocabulary models by interpolating weights »
Gabriel Ilharco · Mitchell Wortsman · Samir Yitzhak Gadre · Shuran Song · Hannaneh Hajishirzi · Simon Kornblith · Ali Farhadi · Ludwig Schmidt -
2022 Poster: LAION-5B: An open large-scale dataset for training next generation image-text models »
Christoph Schuhmann · Romain Beaumont · Richard Vencu · Cade Gordon · Ross Wightman · Mehdi Cherti · Theo Coombes · Aarush Katta · Clayton Mullis · Mitchell Wortsman · Patrick Schramowski · Srivatsa Kundurthy · Katherine Crowson · Ludwig Schmidt · Robert Kaczmarczyk · Jenia Jitsev -
2022 Poster: Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP »
Thao Nguyen · Gabriel Ilharco · Mitchell Wortsman · Sewoong Oh · Ludwig Schmidt -
2021 Oral: Retiring Adult: New Datasets for Fair Machine Learning »
Frances Ding · Moritz Hardt · John Miller · Ludwig Schmidt -
2021 Poster: Retiring Adult: New Datasets for Fair Machine Learning »
Frances Ding · Moritz Hardt · John Miller · Ludwig Schmidt -
2021 Poster: Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning »
Timo Milbich · Karsten Roth · Samarth Sinha · Ludwig Schmidt · Marzyeh Ghassemi · Bjorn Ommer -
2020 Poster: Measuring Robustness to Natural Distribution Shifts in Image Classification »
Rohan Taori · Achal Dave · Vaishaal Shankar · Nicholas Carlini · Benjamin Recht · Ludwig Schmidt -
2020 Spotlight: Measuring Robustness to Natural Distribution Shifts in Image Classification »
Rohan Taori · Achal Dave · Vaishaal Shankar · Nicholas Carlini · Benjamin Recht · Ludwig Schmidt -
2019 Poster: Model Similarity Mitigates Test Set Overuse »
Horia Mania · John Miller · Ludwig Schmidt · Moritz Hardt · Benjamin Recht -
2019 Poster: Unlabeled Data Improves Adversarial Robustness »
Yair Carmon · Aditi Raghunathan · Ludwig Schmidt · John Duchi · Percy Liang -
2019 Poster: A Meta-Analysis of Overfitting in Machine Learning »
Becca Roelofs · Vaishaal Shankar · Benjamin Recht · Sara Fridovich-Keil · Moritz Hardt · John Miller · Ludwig Schmidt -
2015 Poster: Interactive Control of Diverse Complex Characters with Neural Networks »
Igor Mordatch · Kendall Lowrey · Galen Andrew · Zoran Popovic · Emanuel Todorov -
2015 Oral: Interactive Control of Diverse Complex Characters with Neural Networks »
Igor Mordatch · Kendall Lowrey · Galen Andrew · Zoran Popovic · Emanuel Todorov -
2010 Poster: Feature Construction for Inverse Reinforcement Learning »
Sergey Levine · Zoran Popovic · Vladlen Koltun