Timezone: »
Poster
Active Ranking without Strong Stochastic Transitivity
Hao Lou · Tao Jin · Yue Wu · Pan Xu · Quanquan Gu · Farzad Farnoud
Ranking from noisy comparisons is of great practical interest in machine learning. In this paper, we consider the problem of recovering the exact full ranking for a list of items under ranking models that do *not* assume the Strong Stochastic Transitivity property. We propose a $$\delta$$-correct algorithm, Probe-Rank, that actively learns the ranking of the items from noisy pairwise comparisons. We prove a sample complexity upper bound for Probe-Rank, which only depends on the preference probabilities between items that are adjacent in the true ranking. This improves upon existing sample complexity results that depend on the preference probabilities for all pairs of items. Probe-Rank thus outperforms existing methods over a large collection of instances that do not satisfy Strong Stochastic Transitivity. Thorough numerical experiments in various settings are conducted, demonstrating that Probe-Rank is significantly more sample-efficient than the state-of-the-art active ranking method.
Author Information
Hao Lou (University of Virginia)
Tao Jin (University of Virginia)
Yue Wu (University of California, Los Angeles)
Pan Xu (Duke University)
Quanquan Gu (UCLA)
Farzad Farnoud (University of Virginia)
More from the Same Authors
-
2021 : Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization »
Difan Zou · Yuan Cao · Yuanzhi Li · Quanquan Gu -
2021 : Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization »
Difan Zou · Yuan Cao · Yuanzhi Li · Quanquan Gu -
2021 : Faster Perturbed Stochastic Gradient Methods for Finding Local Minima »
Zixiang Chen · Dongruo Zhou · Quanquan Gu -
2021 : Learning Two-Player Mixture Markov Games: Kernel Function Approximation and Correlated Equilibrium »
Chris Junchi Li · Dongruo Zhou · Quanquan Gu · Michael Jordan -
2022 : A General Framework for Sample-Efficient Function Approximation in Reinforcement Learning »
Zixiang Chen · Chris Junchi Li · Angela Yuan · Quanquan Gu · Michael Jordan -
2022 Spotlight: Risk Bounds of Multi-Pass SGD for Least Squares in the Interpolation Regime »
Difan Zou · Jingfeng Wu · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 : Contributed Talks 2 »
Quanquan Gu · Aaron Defazio · Jiajin Li -
2022 Workshop: OPT 2022: Optimization for Machine Learning »
Courtney Paquette · Sebastian Stich · Quanquan Gu · Cristóbal Guzmán · John Duchi -
2022 Poster: Towards Understanding the Mixture-of-Experts Layer in Deep Learning »
Zixiang Chen · Yihe Deng · Yue Wu · Quanquan Gu · Yuanzhi Li -
2022 Poster: Computationally Efficient Horizon-Free Reinforcement Learning for Linear Mixture MDPs »
Dongruo Zhou · Quanquan Gu -
2022 Poster: Benign Overfitting in Two-layer Convolutional Neural Networks »
Yuan Cao · Zixiang Chen · Misha Belkin · Quanquan Gu -
2022 Poster: Learning Two-Player Markov Games: Neural Function Approximation and Correlated Equilibrium »
Chris Junchi Li · Dongruo Zhou · Quanquan Gu · Michael Jordan -
2022 Poster: A Simple and Provably Efficient Algorithm for Asynchronous Federated Contextual Linear Bandits »
Jiafan He · Tianhao Wang · Yifei Min · Quanquan Gu -
2022 Poster: The Power and Limitation of Pretraining-Finetuning for Linear Regression under Covariate Shift »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 Poster: Risk Bounds of Multi-Pass SGD for Least Squares in the Interpolation Regime »
Difan Zou · Jingfeng Wu · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 Poster: Finite-Time Regret of Thompson Sampling Algorithms for Exponential Family Multi-Armed Bandits »
Tianyuan Jin · Pan Xu · Xiaokui Xiao · Anima Anandkumar -
2022 Poster: Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions »
Jiafan He · Dongruo Zhou · Tong Zhang · Quanquan Gu -
2021 : Contributed talks in Session 4 (Zoom) »
Quanquan Gu · Agnieszka Słowik · Jacques Chen · Neha Wadia · Difan Zou -
2021 : Opening Remarks to Session 4 »
Quanquan Gu -
2021 Workshop: OPT 2021: Optimization for Machine Learning »
Courtney Paquette · Quanquan Gu · Oliver Hinder · Katya Scheinberg · Sebastian Stich · Martin Takac -
2021 Poster: The Benefits of Implicit Regularization from SGD in Least Squares Problems »
Difan Zou · Jingfeng Wu · Vladimir Braverman · Quanquan Gu · Dean Foster · Sham Kakade -
2021 Poster: Uniform-PAC Bounds for Reinforcement Learning with Linear Function Approximation »
Jiafan He · Dongruo Zhou · Quanquan Gu -
2021 Poster: Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent »
Spencer Frei · Quanquan Gu -
2021 Poster: Risk Bounds for Over-parameterized Maximum Margin Classification on Sub-Gaussian Mixtures »
Yuan Cao · Quanquan Gu · Mikhail Belkin -
2021 Poster: Nearly Minimax Optimal Reinforcement Learning for Discounted MDPs »
Jiafan He · Dongruo Zhou · Quanquan Gu -
2021 Poster: Reward-Free Model-Based Reinforcement Learning with Linear Function Approximation »
Weitong ZHANG · Dongruo Zhou · Quanquan Gu -
2021 Poster: Variance-Aware Off-Policy Evaluation with Linear Function Approximation »
Yifei Min · Tianhao Wang · Dongruo Zhou · Quanquan Gu -
2021 Poster: Iterative Teacher-Aware Learning »
Luyao Yuan · Dongruo Zhou · Junhong Shen · Jingdong Gao · Jeffrey L Chen · Quanquan Gu · Ying Nian Wu · Song-Chun Zhu -
2021 Poster: Provably Efficient Reinforcement Learning with Linear Function Approximation under Adaptivity Constraints »
Tianhao Wang · Dongruo Zhou · Quanquan Gu -
2021 Poster: Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks »
Hanxun Huang · Yisen Wang · Sarah Erfani · Quanquan Gu · James Bailey · Xingjun Ma -
2021 Poster: Do Wider Neural Networks Really Help Adversarial Robustness? »
Boxi Wu · Jinghui Chen · Deng Cai · Xiaofei He · Quanquan Gu -
2021 Poster: Pure Exploration in Kernel and Neural Bandits »
Yinglun Zhu · Dongruo Zhou · Ruoxi Jiang · Quanquan Gu · Rebecca Willett · Robert Nowak -
2020 : Closing remarks »
Quanquan Gu · Courtney Paquette · Mark Schmidt · Sebastian Stich · Martin Takac -
2020 : Contributed talks in Session 4 (Zoom) »
Quanquan Gu · sanae lotfi · Charles Guille-Escuret · Tolga Ergen · Dongruo Zhou -
2020 : Live Q&A with Deanna Needell and Hanbake Lyu (Zoom) »
Quanquan Gu -
2020 : Welcome remarks to Session 4 »
Quanquan Gu -
2020 Workshop: OPT2020: Optimization for Machine Learning »
Courtney Paquette · Mark Schmidt · Sebastian Stich · Quanquan Gu · Martin Takac -
2020 : Welcome event (gather.town) »
Quanquan Gu · Courtney Paquette · Mark Schmidt · Sebastian Stich · Martin Takac -
2020 Poster: A Generalized Neural Tangent Kernel Analysis for Two-layer Neural Networks »
Zixiang Chen · Yuan Cao · Quanquan Gu · Tong Zhang -
2020 Poster: Agnostic Learning of a Single Neuron with Gradient Descent »
Spencer Frei · Yuan Cao · Quanquan Gu -
2020 Poster: A Finite-Time Analysis of Two Time-Scale Actor-Critic Methods »
Yue Wu · Weitong ZHANG · Pan Xu · Quanquan Gu -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 Poster: Algorithm-Dependent Generalization Bounds for Overparameterized Deep Residual Networks »
Spencer Frei · Yuan Cao · Quanquan Gu -
2019 Poster: Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks »
Difan Zou · Ziniu Hu · Yewen Wang · Song Jiang · Yizhou Sun · Quanquan Gu -
2019 Poster: Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction »
Difan Zou · Pan Xu · Quanquan Gu -
2019 Poster: Tight Sample Complexity of Learning One-hidden-layer Convolutional Neural Networks »
Yuan Cao · Quanquan Gu -
2019 Poster: An Improved Analysis of Training Over-parameterized Deep Neural Networks »
Difan Zou · Quanquan Gu -
2019 Poster: Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks »
Yuan Cao · Quanquan Gu -
2019 Spotlight: Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks »
Yuan Cao · Quanquan Gu -
2018 Poster: Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local Minima »
Yaodong Yu · Pan Xu · Quanquan Gu -
2018 Poster: Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization »
Pan Xu · Jinghui Chen · Difan Zou · Quanquan Gu -
2018 Spotlight: Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization »
Pan Xu · Jinghui Chen · Difan Zou · Quanquan Gu -
2018 Poster: Stochastic Nested Variance Reduced Gradient Descent for Nonconvex Optimization »
Dongruo Zhou · Pan Xu · Quanquan Gu -
2018 Spotlight: Stochastic Nested Variance Reduced Gradient Descent for Nonconvex Optimization »
Dongruo Zhou · Pan Xu · Quanquan Gu -
2018 Poster: Distributed Learning without Distress: Privacy-Preserving Empirical Risk Minimization »
Bargav Jayaraman · Lingxiao Wang · David Evans · Quanquan Gu -
2017 Poster: Speeding Up Latent Variable Gaussian Graphical Model Estimation via Nonconvex Optimization »
Pan Xu · Jian Ma · Quanquan Gu -
2016 Poster: Semiparametric Differential Graph Models »
Pan Xu · Quanquan Gu -
2015 Poster: High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality »
Zhaoran Wang · Quanquan Gu · Yang Ning · Han Liu -
2014 Poster: Sparse PCA with Oracle Property »
Quanquan Gu · Zhaoran Wang · Han Liu -
2014 Poster: Robust Tensor Decomposition with Gross Corruption »
Quanquan Gu · Huan Gui · Jiawei Han -
2012 Poster: Selective Labeling via Error Bound Minimization »
Quanquan Gu · Tong Zhang · Chris Ding · Jiawei Han