Timezone: »
The right to be forgotten calls for efficient machine unlearning techniques that make trained machine learning models forget a cohort of data. The combination of training and unlearning operations in traditional machine unlearning methods often leads to the expensive computational cost on large-scale data. This paper presents a prompt certified machine unlearning algorithm, PCMU, which executes one-time operation of simultaneous training and unlearning in advance for a series of machine unlearning requests, without the knowledge of the removed/forgotten data. First, we establish a connection between randomized smoothing for certified robustness on classification and randomized smoothing for certified machine unlearning on gradient quantization. Second, we propose a prompt certified machine unlearning model based on randomized data smoothing and gradient quantization. We theoretically derive the certified radius R regarding the data change before and after data removals and the certified budget of data removals about R. Last but not least, we present another practical framework of randomized gradient smoothing and quantization, due to the dilemma of producing high confidence certificates in the first framework. We theoretically demonstrate the certified radius R' regarding the gradient change, the correlation between two types of certified radii, and the certified budget of data removals about R'.
Author Information
Zijie Zhang (Auburn University)
Yang Zhou (Auburn University)
Xin Zhao (Auburn University)
Tianshi Che (Auburn University)
Lingjuan Lyu (Sony AI)
More from the Same Authors
-
2022 Poster: CalFAT: Calibrated Federated Adversarial Training with Label Skewness »
Chen Chen · Yuchen Liu · Xingjun Ma · Lingjuan Lyu -
2022 : MocoSFL: enabling cross-client collaborative self-supervised learning »
Jingtao Li · Lingjuan Lyu · Daisuke Iso · Chaitali Chakrabarti · Michael Spranger -
2023 Poster: Towards Personalized Federated Learning via Heterogeneous Model Reassembly »
Jiaqi Wang · Xingyi Yang · Suhan Cui · Liwei Che · Lingjuan Lyu · Dongkuan (DK) Xu · Fenglong Ma -
2023 Poster: Is Heterogeneity Notorious? Taming Heterogeneity to Handle Test-Time Shift in Federated Learning »
Yue Tan · Chen Chen · Weiming Zhuang · Xin Dong · Lingjuan Lyu · Guodong Long -
2023 Poster: Where Did I Come From? Origin Attribution of AI-Generated Images »
Zhenting Wang · Chen Chen · Yi Zeng · Lingjuan Lyu · Shiqing Ma -
2023 Poster: Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception? »
Xiaoxiao Sun · Nidham Gazagnadou · Vivek Sharma · Lingjuan Lyu · Hongdong Li · Liang Zheng -
2023 Poster: UltraRE: Enhancing RecEraser for Recommendation Unlearning via Error Decomposition »
Yuyuan Li · Chaochao Chen · Yizhao Zhang · Weiming Liu · Lingjuan Lyu · Xiaolin Zheng · Dan Meng · Jun Wang -
2022 Poster: CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks »
Xuanli He · Qiongkai Xu · Yi Zeng · Lingjuan Lyu · Fangzhao Wu · Jiwei Li · Ruoxi Jia -
2022 Poster: FairVFL: A Fair Vertical Federated Learning Framework with Contrastive Adversarial Learning »
Tao Qi · Fangzhao Wu · Chuhan Wu · Lingjuan Lyu · Tong Xu · Hao Liao · Zhongliang Yang · Yongfeng Huang · Xing Xie -
2022 Poster: DENSE: Data-Free One-Shot Federated Learning »
Jie Zhang · Chen Chen · Bo Li · Lingjuan Lyu · Shuang Wu · Shouhong Ding · Chunhua Shen · Chao Wu -
2022 Poster: Outsourcing Training without Uploading Data via Efficient Collaborative Open-Source Sampling »
Junyuan Hong · Lingjuan Lyu · Jiayu Zhou · Michael Spranger -
2021 Poster: Gradient Driven Rewards to Guarantee Fairness in Collaborative Machine Learning »
Xinyi Xu · Lingjuan Lyu · Xingjun Ma · Chenglin Miao · Chuan Sheng Foo · Bryan Kian Hsiang Low -
2021 Poster: Anti-Backdoor Learning: Training Clean Models on Poisoned Data »
Yige Li · Xixiang Lyu · Nodens Koren · Lingjuan Lyu · Bo Li · Xingjun Ma -
2021 Poster: Exploiting Data Sparsity in Secure Cross-Platform Social Recommendation »
Jinming Cui · Chaochao Chen · Lingjuan Lyu · Carl Yang · Wang Li -
2021 Poster: Validating the Lottery Ticket Hypothesis with Inertial Manifold Theory »
Zeru Zhang · Jiayin Jin · Zijie Zhang · Yang Zhou · Xin Zhao · Jiaxiang Ren · Ji Liu · Lingfei Wu · Ruoming Jin · Dejing Dou -
2020 Poster: Adversarial Attacks on Deep Graph Matching »
Zijie Zhang · Zeru Zhang · Yang Zhou · Yelong Shen · Ruoming Jin · Dejing Dou