Timezone: »
Poster
Finite-Time Last-Iterate Convergence for Learning in Multi-Player Games
Yang Cai · Argyris Oikonomou · Weiqiang Zheng
We study the question of last-iterate convergence rate of the extragradient algorithm by Korpelevich [1976] and the optimistic gradient algorithm by Popov [1980] in multi-player games. We show that both algorithms with constant step-size have last-iterate convergence rate of $O(\frac{1}{\sqrt{T}})$ to a Nash equilibrium in terms of the gap function in smooth monotone games, where each player's action set is an arbitrary convex set. Previous results only study the unconstrained setting, where each player's action set is the entire Euclidean space. Our results address an open question raised in several recent work by Hsieh et al. [2019], Golowich et al. [2020a,b], who ask for last-iterate convergence rate of either the extragradient or the optimistic gradient algorithm in the constrained setting. Our convergence rates for both algorithms are tight and match the lower bounds by Golowich et al. [2020a,b]. At the core of our results lies a new notion -- the tangent residual, which we use to measure the proximity to equilibrium. We use the tangent residual (or a slight variation of the tangent residual) as the the potential function in our analysis of the extragradient algorithm (or the optimistic gradient algorithm) and prove that it is non-increasing between two consecutive iterates.
Author Information
Yang Cai (Yale University)
Argyris Oikonomou (Yale University)

Argyris Oikonomou is a PhD Student in the department of Computer Science at Yale, advised by Yang Cai. Argyris completed his undergraduate studies at the National Technical University of Athens. His research interests are in mechanism design and algorithmic game theory.
Weiqiang Zheng (Yale University)
More from the Same Authors
-
2021 : Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions »
Xiaotie Deng · Xinyan Hu · Tao Lin · Weiqiang Zheng -
2021 : Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions »
Xiaotie Deng · Xinyan Hu · Tao Lin · Weiqiang Zheng -
2022 : Accelerated Single-Call Methods for Constrained Min-Max Optimization »
Yang Cai · Weiqiang Zheng -
2022 : Accelerated Algorithms for Monotone Inclusion and Constrained Nonconvex-Nonconcave Min-Max Optimization »
Yang Cai · Argyris Oikonomou · Weiqiang Zheng -
2023 Poster: Uncoupled and Convergent Learning in Two-Player Zero-Sum Markov Games »
Yang Cai · Haipeng Luo · Chen-Yu Wei · Weiqiang Zheng -
2022 Panel: Panel 2A-4: Uncoupled Learning Dynamics… & Finite-Time Last-Iterate Convergence… »
Yang Cai · Ioannis Anagnostides -
2022 : Poster Session 2 »
Jinwuk Seok · Bo Liu · Ryotaro Mitsuboshi · David Martinez-Rubio · Weiqiang Zheng · Ilgee Hong · Chen Fan · Kazusato Oko · Bo Tang · Miao Cheng · Aaron Defazio · Tim G. J. Rudner · Gabriele Farina · Vishwak Srinivasan · Ruichen Jiang · Peng Wang · Jane Lee · Nathan Wycoff · Nikhil Ghosh · Yinbin Han · David Mueller · Liu Yang · Amrutha Varshini Ramesh · Siqi Zhang · Kaifeng Lyu · David Yunis · Kumar Kshitij Patel · Fangshuo Liao · Dmitrii Avdiukhin · Xiang Li · Sattar Vakili · Jiaxin Shi -
2022 : Poster Session 1 »
Andrew Lowy · Thomas Bonnier · Yiling Xie · Guy Kornowski · Simon Schug · Seungyub Han · Nicolas Loizou · xinwei zhang · Laurent Condat · Tabea E. Röber · Si Yi Meng · Marco Mondelli · Runlong Zhou · Eshaan Nichani · Adrian Goldwaser · Rudrajit Das · Kayhan Behdin · Atish Agarwala · Mukul Gagrani · Gary Cheng · Tian Li · Haoran Sun · Hossein Taheri · Allen Liu · Siqi Zhang · Dmitrii Avdiukhin · Bradley Brown · Miaolan Xie · Junhyung Lyle Kim · Sharan Vaswani · Xinmeng Huang · Ganesh Ramachandra Kini · Angela Yuan · Weiqiang Zheng · Jiajin Li -
2018 Poster: Learning Safe Policies with Expert Guidance »
Jessie Huang · Fa Wu · Doina Precup · Yang Cai -
2017 : Spotlights »
Antti Kangasrääsiö · Richard Everett · Yitao Liang · Yang Cai · Steven Wu · Vidya Muthukumar · Sven Schmit