Timezone: »
Recent analyses of self-supervised learning (SSL) find the following data-centric properties to be critical for learning good representations: invariance to task-irrelevant semantics, separability of classes in some latent space, and recoverability of labels from augmented samples. However, given their discrete, non-Euclidean nature, graph datasets and graph SSL methods are unlikely to satisfy these properties. This raises the question: how do graph SSL methods, such as contrastive learning (CL), work well? To systematically probe this question, we perform a generalization analysis for CL when using generic graph augmentations (GGAs), with a focus on data-centric properties. Our analysis yields formal insights into the limitations of GGAs and the necessity of task-relevant augmentations. As we empirically show, GGAs do not induce task-relevant invariances on common benchmark datasets, leading to only marginal gains over naive, untrained baselines. Our theory motivates a synthetic data generation process that enables control over task-relevant information and boasts pre-defined optimal augmentations. This flexible benchmark helps us identify yet unrecognized limitations in advanced augmentation techniques (e.g., automated methods). Overall, our work rigorously contextualizes, both empirically and theoretically, the effects of data-centric properties on augmentation strategies and learning paradigms for graph SSL.
Author Information
Puja Trivedi (University of Michigan)
Ekdeep S Lubana (University of Michigan; CBS, Harvard University)
Mark Heimann (Lawrence Livermore National Laboratory)
Danai Koutra (U Michigan)
Jayaraman Thiagarajan (Lawrence Livermore National Labs)
More from the Same Authors
-
2021 : Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks »
Yujun Yan · Milad Hashemi · Kevin Swersky · Yaoqing Yang · Danai Koutra -
2021 : A Graph Perspective on Neural Network Dynamics »
Fatemeh Vahedian · Ruiyu Li · Puja Trivedi · Di Jin · Danai Koutra -
2021 : Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion »
Ankita Shukla · Rushil Anirudh · Eugene Kur · Jayaraman Thiagarajan · Timo Bremer · Brian K Spears · Tammy Ma · Pavan Turaga -
2022 : A Closer Look at Model Adaptation using Feature Distortion and Simplicity Bias »
Puja Trivedi · Danai Koutra · Jayaraman Thiagarajan -
2022 : Mechanistic Lens on Mode Connectivity »
Ekdeep S Lubana · Eric Bigelow · Robert Dick · David Krueger · Hidenori Tanaka -
2022 : What shapes the loss landscape of self-supervised learning? »
Liu Ziyin · Ekdeep S Lubana · Masahito Ueda · Hidenori Tanaka -
2022 : Geometric Considerations for Normalization Layers in Equivariant Neural Networks »
Max Aalto · Ekdeep S Lubana · Hidenori Tanaka -
2022 : Modeling Hierarchical Topological Structure in Scientific Images with Graph Neural Networks »
Samuel Leventhal · Attila Gyulassy · Valerio Pascucci · Mark Heimann -
2022 : A Mechanistic Lens on Mode Connectivity »
Ekdeep S Lubana · Eric Bigelow · Robert Dick · David Krueger · Hidenori Tanaka -
2022 Spotlight: Single Model Uncertainty Estimation via Stochastic Data Centering »
Jayaraman Thiagarajan · Rushil Anirudh · Vivek Sivaraman Narayanaswamy · Timo Bremer -
2022 Poster: Single Model Uncertainty Estimation via Stochastic Data Centering »
Jayaraman Thiagarajan · Rushil Anirudh · Vivek Sivaraman Narayanaswamy · Timo Bremer -
2021 Poster: Beyond BatchNorm: Towards a Unified Understanding of Normalization in Deep Learning »
Ekdeep S Lubana · Robert Dick · Hidenori Tanaka -
2020 Poster: A Statistical Mechanics Framework for Task-Agnostic Sample Design in Machine Learning »
Bhavya Kailkhura · Jayaraman Thiagarajan · Qunwei Li · Jize Zhang · Yi Zhou · Timo Bremer -
2020 Poster: Neural Execution Engines: Learning to Execute Subroutines »
Yujun Yan · Kevin Swersky · Danai Koutra · Parthasarathy Ranganathan · Milad Hashemi -
2020 Poster: Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs »
Jiong Zhu · Yujun Yan · Lingxiao Zhao · Mark Heimann · Leman Akoglu · Danai Koutra -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · SĂ©bastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie