Timezone: »

 
Poster
A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation
Philip Amortila · Nan Jiang · Dhruv Madeka · Dean Foster

Wed Nov 30 09:00 AM -- 11:00 AM (PST) @ Hall J #839
The current paper studies sample-efficient Reinforcement Learning (RL) in settings where only the optimal value function is assumed to be linearly-realizable. It has recently been understood that, even under this seemingly strong assumption and access to a generative model, worst-case sample complexities can be prohibitively (i.e., exponentially) large. We investigate the setting where the learner additionally has access to interactive demonstrations from an expert policy, and we present a statistically and computationally efficient algorithm (Delphi) for blending exploration with expert queries. In particular, Delphi requires $\tilde O(d)$ expert queries and a $\texttt{poly}(d,H,|A|,1/\varepsilon)$ amount of exploratory samples to provably recover an $\varepsilon$-suboptimal policy. Compared to pure RL approaches, this corresponds to an exponential improvement in sample complexity with surprisingly-little expert input. Compared to prior imitation learning (IL) approaches, our required number of expert demonstrations is independent of $H$ and logarithmic in $1/\varepsilon$, whereas all prior work required at least linear factors of both in addition to the same dependence on $d$. Towards establishing the minimal amount of expert queries needed, we show that, in the same setting, any learner whose exploration budget is \textit{polynomially-bounded} (in terms of $d,H,$ and $|A|$) will require \textit{at least} $\tilde\Omega(\sqrt{d})$ oracle calls to recover a policy competing with the expert's value function. Under the weaker assumption that the expert's policy is linear, we show that the lower bound increases to $\tilde\Omega(d)$.

Author Information

Philip Amortila (University of Illinois at Urbana-Champaign)
Nan Jiang (University of Illinois at Urbana-Champaign)
Dhruv Madeka (Self)
Dean Foster (Amazon.com (NYC))

More from the Same Authors

  • 2021 : Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning »
    Cameron Voloshin · Hoang Le · Nan Jiang · Yisong Yue
  • 2022 Poster: Tiered Reinforcement Learning: Pessimism in the Face of Uncertainty and Constant Regret »
    Jiawei Huang · Li Zhao · Tao Qin · Wei Chen · Nan Jiang · Tie-Yan Liu
  • 2022 : Trajectory-based Explainability Framework for Offline RL »
    Shripad Deshmukh · Arpan Dasgupta · Chirag Agarwal · Nan Jiang · Balaji Krishnamurthy · Georgios Theocharous · Jayakumar Subramanian
  • 2022 : AMORE: A Model-based Framework for Improving Arbitrary Baseline Policies with Offline Data »
    Tengyang Xie · Mohak Bhardwaj · Nan Jiang · Ching-An Cheng
  • 2022 Spotlight: Tiered Reinforcement Learning: Pessimism in the Face of Uncertainty and Constant Regret »
    Jiawei Huang · Li Zhao · Tao Qin · Wei Chen · Nan Jiang · Tie-Yan Liu
  • 2022 Spotlight: Lightning Talks 4A-1 »
    Yuanyu Wan · Jiechao Guan · Denizalp Goktas · Ruomin Huang · Su Jia · Jiawei Huang · Abdurakhmon Sadiev · Wei-Wei Tu · Jiawei Huang · Andrew Li · Yong Liu · Dmitry Kovalev · Li Zhao · Amy Greenwald · Wenjie Liu · Zhiwu Lu · R Ravi · Tao Qin · Lijun Zhang · Peter Richtarik · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu
  • 2022 Poster: Beyond the Return: Off-policy Function Estimation under User-specified Error-measuring Distributions »
    Audrey Huang · Nan Jiang
  • 2022 Poster: Interaction-Grounded Learning with Action-inclusive Feedback »
    Tengyang Xie · Akanksha Saran · Dylan J Foster · Lekan Molu · Ida Momennejad · Nan Jiang · Paul Mineiro · John Langford
  • 2022 Poster: On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL »
    Jinglin Chen · Aditya Modi · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal
  • 2021 : Retrospective Panel »
    Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal
  • 2021 Workshop: Offline Reinforcement Learning »
    Rishabh Agarwal · Aviral Kumar · George Tucker · Justin Fu · Nan Jiang · Doina Precup · Aviral Kumar
  • 2021 Poster: Towards Hyperparameter-free Policy Selection for Offline Reinforcement Learning »
    Siyuan Zhang · Nan Jiang
  • 2021 Poster: Bellman-consistent Pessimism for Offline Reinforcement Learning »
    Tengyang Xie · Ching-An Cheng · Nan Jiang · Paul Mineiro · Alekh Agarwal
  • 2021 Poster: The Benefits of Implicit Regularization from SGD in Least Squares Problems »
    Difan Zou · Jingfeng Wu · Vladimir Braverman · Quanquan Gu · Dean Foster · Sham Kakade
  • 2021 Oral: Bellman-consistent Pessimism for Offline Reinforcement Learning »
    Tengyang Xie · Ching-An Cheng · Nan Jiang · Paul Mineiro · Alekh Agarwal
  • 2021 Poster: Policy Finetuning: Bridging Sample-Efficient Offline and Online Reinforcement Learning »
    Tengyang Xie · Nan Jiang · Huan Wang · Caiming Xiong · Yu Bai
  • 2020 : Towards Reliable Validation and Evaluation for Offline RL »
    Nan Jiang
  • 2020 : Panel »
    Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar
  • 2019 : Poster and Coffee Break 2 »
    Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall
  • 2019 : Poster and Coffee Break 1 »
    Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova
  • 2019 Poster: Provably Efficient Q-Learning with Low Switching Cost »
    Yu Bai · Tengyang Xie · Nan Jiang · Yu-Xiang Wang