Timezone: »
Local optimization presents a promising approach to expensive, high-dimensional black-box optimization by sidestepping the need to globally explore the search space. For objective functions whose gradient cannot be evaluated directly, Bayesian optimization offers one solution -- we construct a probabilistic model of the objective, design a policy to learn about the gradient at the current location, and use the resulting information to navigate the objective landscape. Previous work has realized this scheme by minimizing the variance in the estimate of the gradient, then moving in the direction of the expected gradient. In this paper, we re-examine and refine this approach. We demonstrate that, surprisingly, the expected value of the gradient is not always the direction maximizing the probability of descent, and in fact, these directions may be nearly orthogonal. This observation then inspires an elegant optimization scheme seeking to maximize the probability of descent while moving in the direction of most-probable descent. Experiments on both synthetic and real-world objectives show that our method outperforms previous realizations of this optimization scheme and is competitive against other, significantly more complicated baselines.
Author Information
Quan Nguyen (Washington University, St. Louis)

I am a fourth-year Ph.D. student in Computer Science at the McKelvey School of Engineering at Washington University in St. Louis, advised by Prof. Roman Garnett. My research interests are in Bayesian machine learning, active search, and general decision-making under uncertainty to accelerate and automate scientific discovery.
Kaiwen Wu (University of Pennsylvania)
Jacob Gardner (University of Pennsylvania)
Roman Garnett (Washington University in St. Louis)
More from the Same Authors
-
2022 : Efficient Variational Gaussian Processes Initialization via Kernel-based Least Squares Fitting »
Xinran Zhu · David Bindel · Jacob Gardner -
2023 Poster: Variational Gaussian Processes with Decoupled Conditionals »
Xinran Zhu · Kaiwen Wu · Natalie Maus · Jacob Gardner · David Bindel -
2023 Poster: Black-Box Variational Inference Converges »
Kyurae Kim · Kaiwen Wu · Jisu Oh · Yian Ma · Jacob Gardner -
2023 Poster: The Behavior and Convergence of Local Bayesian Optimization »
Kaiwen Wu · Kyurae Kim · Roman Garnett · Jacob Gardner -
2022 Panel: Panel 1A-3: A gradient sampling… & Local Bayesian optimization… »
Swati Padmanabhan · Quan Nguyen -
2022 : Panel »
Roman Garnett · José Miguel Hernández-Lobato · Eytan Bakshy · Syrine Belakaria · Stefanie Jegelka -
2022 : Q & A »
Jacob Gardner · Virginia Aglietti · Janardhan Rao Doppa -
2022 Tutorial: Advances in Bayesian Optimization »
Janardhan Rao Doppa · Virginia Aglietti · Jacob Gardner -
2022 : Tutorial part 1 »
Jacob Gardner · Virginia Aglietti · Janardhan Rao Doppa -
2022 : Panel Discussion »
Jacob Gardner · Marta Blangiardo · Viacheslav Borovitskiy · Jasper Snoek · Paula Moraga · Carolina Osorio -
2022 Poster: Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients »
Kyurae Kim · Jisu Oh · Jacob Gardner · Adji Bousso Dieng · Hongseok Kim -
2022 Poster: Local Latent Space Bayesian Optimization over Structured Inputs »
Natalie Maus · Haydn Jones · Juston Moore · Matt Kusner · John Bradshaw · Jacob Gardner -
2021 Poster: Scaling Gaussian Processes with Derivative Information Using Variational Inference »
Misha Padidar · Xinran Zhu · Leo Huang · Jacob Gardner · David Bindel -
2020 Poster: Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization »
Geoff Pleiss · Martin Jankowiak · David Eriksson · Anil Damle · Jacob Gardner -
2020 Poster: Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees »
Shali Jiang · Daniel Jiang · Maximilian Balandat · Brian Karrer · Jacob Gardner · Roman Garnett -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: Cost Effective Active Search »
Shali Jiang · Roman Garnett · Benjamin Moseley -
2019 Poster: D-VAE: A Variational Autoencoder for Directed Acyclic Graphs »
Muhan Zhang · Shali Jiang · Zhicheng Cui · Roman Garnett · Yixin Chen -
2018 Poster: Efficient nonmyopic batch active search »
Shali Jiang · Gustavo Malkomes · Matthew Abbott · Benjamin Moseley · Roman Garnett -
2018 Spotlight: Efficient nonmyopic batch active search »
Shali Jiang · Gustavo Malkomes · Matthew Abbott · Benjamin Moseley · Roman Garnett -
2018 Poster: Automating Bayesian optimization with Bayesian optimization »
Gustavo Malkomes · Roman Garnett -
2016 Poster: Bayesian optimization for automated model selection »
Gustavo Malkomes · Charles Schaff · Roman Garnett -
2015 : *Roman Garnett* Bayesian Quadrature: Lessons Learned and Looking Forwards »
Roman Garnett -
2015 Poster: Bayesian Active Model Selection with an Application to Automated Audiometry »
Jacob Gardner · Gustavo Malkomes · Roman Garnett · Kilian Weinberger · Dennis Barbour · John Cunningham -
2014 Poster: Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature »
Tom Gunter · Michael A Osborne · Roman Garnett · Philipp Hennig · Stephen J Roberts -
2013 Poster: Σ-Optimality for Active Learning on Gaussian Random Fields »
Yifei Ma · Roman Garnett · Jeff Schneider