Timezone: »

 
Poster
Decoupled Context Processing for Context Augmented Language Modeling
Zonglin Li · Ruiqi Guo · Sanjiv Kumar

Wed Nov 30 02:00 PM -- 04:00 PM (PST) @ Hall J #801
Language models can be augmented with context retriever to incorporate knowledge from large external databases. By leveraging retrieved context, the neural network does not have to memorize the massive amount of world knowledge within its internal parameters, leading to better parameter efficiency, interpretability and modularity. In this paper we examined a simple yet effective architecture for incorporating external context into language models based on decoupled $\texttt{Encoder-Decoder}$ architecture. We showed that such a simple architecture achieves competitive results on auto-regressive language modeling and open domain question answering tasks. We also analyzed the behavior of the proposed model which performs grounded context transfer. Finally we discussed the computational implications of such retrieval augmented models.

Author Information

Zonglin Li (Google)
Ruiqi Guo (Google)
Sanjiv Kumar (Google Research)

More from the Same Authors