Timezone: »
Efficient post-consumer waste recycling is one of the key challenges of modern society, as countries struggle to find sustainable solutions to rapidly rising waste levels and avoid increased soil and sea pollution. The US is one of the leading countries in waste generation by volume but recycles less than 35% of its recyclable waste. Recyclable waste is sorted according to material type (paper, plastic, etc.) in material recovery facilities (MRFs) which still heavily rely on manual sorting. Computer vision solutions are an essential component in automating waste sorting and ultimately solving the pollution problem.In this sixth iteration of the VisDA challenge, we introduce a simulation-to-real (Sim2Real) semantic image segmentation competition for industrial waste sorting. We aim to answer the question: can synthetic data augmentation improve performance on this task and help adapt to changing data distributions? Label-efficient and reliable semantic segmentation is essential for this setting, but differs significantly from existing semantic segmentation datasets: waste objects are typically severely deformed and randomly located, which limits the efficacy of both shape and context priors, and have long tailed distributions and high clutter. Synthetic data augmentation can benefit such applications due to the difficulty in obtaining labels and rare categories. However, new solutions are needed to overcome the large domain gap between simulated and real images. Natural domain shift due to factors such as MRF location, season, machinery in use, etc., also needs to be handled in this application.Competitors will have access to two sources of training data: a novel procedurally generated synthetic waste sorting dataset, SynthWaste, as well as fully-annotated waste sorting data collected from a real material recovery facility. The target test set will be real data from a different MRF.
Thu 1:00 p.m. - 1:15 p.m.
|
Challenge Introduction
(
Talk
)
|
Dina Bashkirova · Samarth Mishra · Piotr Teterwak · Donghyun Kim · Sarah Bargal · Diala Lteif · Kate Saenko 🔗 |
Thu 1:15 p.m. - 2:00 p.m.
|
Presentations from Winners
(
Presentations + Q&A
)
|
Binhui Xie · Shahaf Ettedgui · Dong-Geol Choi 🔗 |
Thu 2:00 p.m. - 2:20 p.m.
|
Subhransu Maji: Learning to Track Birds with Weather RADARs
(
Talk
)
|
Subhransu Maji 🔗 |
Thu 2:20 p.m. - 2:40 p.m.
|
Colorado Reed: From AI for Science to Science for AI. A tale of ice, fire, and domain adaptation
(
Talk
)
|
Colorado Reed 🔗 |
Thu 2:40 p.m. - 3:00 p.m.
|
Amanda Marrs: Applying AI and Computer Vision to Modernize Recycling and Increase Landfill Diversion
(
Talk
)
|
Amanda Marrs 🔗 |
Thu 3:00 p.m. - 3:20 p.m.
|
Ian Goodine, Ethan Walko: Decentralized Waste Sorting
(
Talk
)
|
Ian Goodine 🔗 |
Thu 3:20 p.m. - 3:40 p.m.
|
Sujit Sanjeev: Introduction to CircularNet
(
Talk
)
|
Sujit Sanjeev 🔗 |
Thu 3:40 p.m. - 4:00 p.m.
|
Final Q&A and Discussion Session
(
Discussion Panel
)
|
Ian Goodine · Sujit Sanjeev · Amanda Marrs · Subhransu Maji · Colorado Reed · Binhui Xie · Dong-Geol Choi · Shahaf Ettedgui · Dina Bashkirova · Samarth Mishra · Piotr Teterwak · Donghyun Kim · Diala Lteif
|
-
|
Fifteen-minute Competition Overview Video
(
Overview
)
SlidesLive Video » |
Kate Saenko · Samarth Mishra · Dina Bashkirova · Vitaly Ablavsky · Sarah Bargal · Rachel Lai · Piotr Teterwak · James Akl · Fadi Alladkani · Donghyun Kim · Berk Calli
|
Author Information
Dina Bashkirova (Boston University)
Samarth Mishra (Boston University)
Piotr Teterwak (Boston University)
Donghyun Kim (Boston University)
Rachel Lai (Boston University)
Fadi Alladkani (Worcester Polytechnic Institute)
James Akl (Worcester Polytechnic Institute)
Vitaly Ablavsky (University of Washington)
Sarah Bargal (Boston University)
Berk Calli
Kate Saenko (Boston University & MIT-IBM Watson AI Lab, IBM Research)
More from the Same Authors
-
2021 Spotlight: Look at What I’m Doing: Self-Supervised Spatial Grounding of Narrations in Instructional Videos »
Reuben Tan · Bryan Plummer · Kate Saenko · Hailin Jin · Bryan Russell -
2021 : RB2: Robotic Manipulation Benchmarking with a Twist »
Sudeep Dasari · Jianren Wang · Joyce Hong · Shikhar Bahl · Yixin Lin · Austin Wang · Abitha Thankaraj · Karanbir Chahal · Berk Calli · Saurabh Gupta · David Held · Lerrel Pinto · Deepak Pathak · Vikash Kumar · Abhinav Gupta -
2021 : Select, Label, and Mix: Learning Discriminative Invariant Feature Representations for Partial Domain Adaptation »
Aadarsh Sahoo · Rameswar Panda · Rogerio Feris · Kate Saenko · Abir Das -
2021 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa · Pang Wei Koh · Tony Lee · Irena Gao · Sang Michael Xie · Kendrick Shen · Ananya Kumar · Weihua Hu · Michihiro Yasunaga · Henrik Marklund · Sara Beery · Ian Stavness · Jure Leskovec · Kate Saenko · Tatsunori Hashimoto · Sergey Levine · Chelsea Finn · Percy Liang -
2021 : Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining and Consistency »
Samarth Mishra · Kate Saenko · Venkatesh Saligrama -
2022 : Fifteen-minute Competition Overview Video »
Kate Saenko · Samarth Mishra · Dina Bashkirova · Vitaly Ablavsky · Sarah Bargal · Rachel Lai · Piotr Teterwak · James Akl · Fadi Alladkani · Donghyun Kim · Berk Calli -
2022 : Final Q&A and Discussion Session »
Ian Goodine · Sujit Sanjeev · Amanda Marrs · Subhransu Maji · Colorado Reed · Binhui Xie · Dong-Geol Choi · Shahaf Ettedgui · Dina Bashkirova · Samarth Mishra · Piotr Teterwak · Donghyun Kim · Diala Lteif -
2022 : Challenge Introduction »
Dina Bashkirova · Samarth Mishra · Piotr Teterwak · Donghyun Kim · Sarah Bargal · Diala Lteif · Kate Saenko -
2022 : Human Evaluation of Text-to-Image Models on a Multi-Task Benchmark »
Vitali Petsiuk · Alexander E. Siemenn · Saisamrit Surbehera · Qi Qi Chin · Keith Tyser · Gregory Hunter · Arvind Raghavan · Yann Hicke · Bryan Plummer · Ori Kerret · Tonio Buonassisi · Kate Saenko · Armando Solar-Lezama · Iddo Drori -
2022 Poster: DualCoOp: Fast Adaptation to Multi-Label Recognition with Limited Annotations »
Ximeng Sun · Ping Hu · Kate Saenko -
2022 Poster: Finding Differences Between Transformers and ConvNets Using Counterfactual Simulation Testing »
Nataniel Ruiz · Sarah Bargal · Cihang Xie · Kate Saenko · Stan Sclaroff -
2022 Poster: How Transferable are Video Representations Based on Synthetic Data? »
Yo-whan Kim · Samarth Mishra · SouYoung Jin · Rameswar Panda · Hilde Kuehne · Leonid Karlinsky · Venkatesh Saligrama · Kate Saenko · Aude Oliva · Rogerio Feris -
2022 Poster: FETA: Towards Specializing Foundational Models for Expert Task Applications »
Amit Alfassy · Assaf Arbelle · Oshri Halimi · Sivan Harary · Roei Herzig · Eli Schwartz · Rameswar Panda · Michele Dolfi · Christoph Auer · Peter Staar · Kate Saenko · Rogerio Feris · Leonid Karlinsky -
2021 Workshop: Distribution shifts: connecting methods and applications (DistShift) »
Shiori Sagawa · Pang Wei Koh · Fanny Yang · Hongseok Namkoong · Jiashi Feng · Kate Saenko · Percy Liang · Sarah Bird · Sergey Levine -
2021 Poster: OpenMatch: Open-Set Semi-supervised Learning with Open-set Consistency Regularization »
Kuniaki Saito · Donghyun Kim · Kate Saenko -
2021 Poster: Look at What I’m Doing: Self-Supervised Spatial Grounding of Narrations in Instructional Videos »
Reuben Tan · Bryan Plummer · Kate Saenko · Hailin Jin · Bryan Russell -
2021 : VisDA21: Visual Domain Adaptation + Q&A »
Kate Saenko · Kuniaki Saito · Donghyun Kim · Samarth Mishra · Ben Usman · Piotr Teterwak · Dina Bashkirova · Dan Hendrycks -
2021 Poster: Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing »
Aadarsh Sahoo · Rutav Shah · Rameswar Panda · Kate Saenko · Abir Das -
2020 Poster: Supervised Contrastive Learning »
Prannay Khosla · Piotr Teterwak · Chen Wang · Aaron Sarna · Yonglong Tian · Phillip Isola · Aaron Maschinot · Ce Liu · Dilip Krishnan -
2020 Poster: Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable Neural Distribution Alignment »
Ben Usman · Avneesh Sud · Nick Dufour · Kate Saenko -
2020 Poster: Uncertainty-Aware Learning for Zero-Shot Semantic Segmentation »
Ping Hu · Stan Sclaroff · Kate Saenko -
2020 Poster: Universal Domain Adaptation through Self Supervision »
Kuniaki Saito · Donghyun Kim · Stan Sclaroff · Kate Saenko -
2020 Poster: Auxiliary Task Reweighting for Minimum-data Learning »
Baifeng Shi · Judy Hoffman · Kate Saenko · Trevor Darrell · Huijuan Xu -
2020 Poster: AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning »
Ximeng Sun · Rameswar Panda · Rogerio Feris · Kate Saenko -
2019 Poster: Adversarial Self-Defense for Cycle-Consistent GANs »
Dina Bashkirova · Ben Usman · Kate Saenko -
2018 Poster: Speaker-Follower Models for Vision-and-Language Navigation »
Daniel Fried · Ronghang Hu · Volkan Cirik · Anna Rohrbach · Jacob Andreas · Louis-Philippe Morency · Taylor Berg-Kirkpatrick · Kate Saenko · Dan Klein · Trevor Darrell -
2016 : Invited Talk: Domain Adaption for Perception and Action (Kate Saenko, Boston University) »
Kate Saenko -
2015 Workshop: Transfer and Multi-Task Learning: Trends and New Perspectives »
Anastasia Pentina · Christoph Lampert · Sinno Jialin Pan · Mingsheng Long · Judy Hoffman · Baochen Sun · Kate Saenko