Timezone: »
Driving SMARTS is a regular competition designed to tackle problems caused by the distribution shift in dynamic interaction contexts that are prevalent in real-world autonomous driving (AD). The proposed competition supports methodologically diverse solutions, such as reinforcement learning (RL) and offline learning methods, trained on a combination of naturalistic AD data and open-source simulation platform SMARTS. The two-track structure allows focusing on different aspects of the distribution shift. Track 1 is open to any method and will give ML researchers with different backgrounds an opportunity to solve a real-world autonomous driving challenge. Track 2 is designed for strictly offline learning methods. Therefore, direct comparisons can be made between different methods with the aim to identify new promising research directions. The proposed setup consists of 1) realistic traffic generated using real-world data and micro simulators to ensure fidelity of the scenarios, 2) framework accommodating diverse methods for solving the problem, and 3) a baseline method. As such it provides a unique opportunity for the principled investigation into various aspects of autonomous vehicle deployment.
Tue 5:00 a.m. - 5:10 a.m.
|
Opening Remarks
(
Competition
)
|
🔗 |
Tue 5:10 a.m. - 5:40 a.m.
|
Introduction to Driving SMARTS
(
Competition
)
|
🔗 |
Tue 5:40 a.m. - 6:00 a.m.
|
Winning Team Presentation: 1st place tjudrllab-fanta
(
Competition
)
|
🔗 |
Tue 6:00 a.m. - 6:20 a.m.
|
Winning Team Presentation: 2nd place VCR
(
Competition
)
|
🔗 |
Tue 6:20 a.m. - 6:40 a.m.
|
Winning Team Presentation: 3rd place AID
(
Competition
)
|
🔗 |
Tue 6:40 a.m. - 7:00 a.m.
|
Q&A and Closing Remarks
(
Competition
)
|
🔗 |
-
|
Fifteen-minute Competition Overview Video
(
Overview
)
SlidesLive Video » |
Tianpei Yang · Iuliia Kotseruba · Montgomery Alban · Amir Rasouli · Soheil Mohamad Alizadeh Shabestary · Randolph Goebel · Matthew Taylor · Liam Paull · Florian Shkurti 🔗 |
Author Information
Amir Rasouli (Huawei)
I have received my Ph.D. in computer science from York University, Canada. My research areas are computer vision and robotics, in particular, autonomous driving systems with a focus on pedestrian behavior understanding and prediction.
Matthew Taylor (U. of Alberta)
Iuliia Kotseruba (York University)

I am a PhD student supervised by Prof. John K. Tsotsos and member of the Lab for Active and Attentive Vision at York University. I received my BSc degree in Artificial Intelligence from University of Toronto and MSc degree in Computer Science from York University. I study human visual attention with the goal of integrating attention and vision with other cognitive abilities in AI systems. My current research topics are understanding driver-pedestrian interaction and predicting driver attention for designing assistive and autonomous driving technology.
Tianpei Yang (University of Alberta)
Randolph Goebel (University of Alberta, Alberta Machine Intelligence Institute)
R.G. (Randy) Goebel is currently professor and chair in the Department of Computing Science at the University of Alberta He received the B.Sc. (Computer Science), M.Sc. (Computing Science), and Ph.D. (Computer Science) from the Universities of Regina, Alberta, and British Columbia, respectively. Professor Goebel's research is focused on the theory and application of intelligent systems. His theoretical work on abduction, hypothetical reasoning and belief revision is internationally well know, and his recent application of practical belief revision and constraint programming to scheduling, layout, and web mining is now having industrial impact. He is one of the founders of the Alberta Ingenuity Centre for Machine Learning (AICML), and is now working on applications of machine learning to various problems, including web visualization and scheduling. Randy has previously held faculty appointments at the University of Waterloo and the University of Tokyo, and is actively involved in academic and industrial collaborative research projects in Canada, Australia, Malaysia, Europe and Japan.
Soheil Mohamad Alizadeh Shabestary (Huawei Technologies Canada)
Montgomery Alban (Huawei)
Florian Shkurti (University of Toronto)
Liam Paull (University of Montreal)
More from the Same Authors
-
2020 : Paper 14: PePScenes: A Novel Dataset and Baseline for Pedestrian Action Prediction in 3D »
Amir Rasouli · Mohsen Rohani -
2021 Spotlight: Iterative Teaching by Label Synthesis »
Weiyang Liu · Zhen Liu · Hanchen Wang · Liam Paull · Bernhard Schölkopf · Adrian Weller -
2021 : Safe Evaluation For Offline Learning: \\Are We Ready To Deploy? »
Hager Radi · Josiah Hanna · Peter Stone · Matthew Taylor -
2021 : Safe Evaluation For Offline Learning: \\Are We Ready To Deploy? »
Hager Radi · Josiah Hanna · Peter Stone · Matthew Taylor -
2022 Poster: Multiagent Q-learning with Sub-Team Coordination »
Wenhan Huang · Kai Li · Kun Shao · Tianze Zhou · Matthew Taylor · Jun Luo · Dongge Wang · Hangyu Mao · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 : Multi-Agent Reinforcement Learning for Fast-Timescale Demand Response »
Vincent Mai · Philippe Maisonneuve · Tianyu Zhang · Jorge Montalvo Arvizu · Liam Paull · Antoine Lesage-Landry -
2022 : Multi-Agent Reinforcement Learning for Fast-Timescale Demand Response »
Vincent Mai · Philippe Maisonneuve · Tianyu Zhang · Jorge Montalvo Arvizu · Liam Paull · Antoine Lesage-Landry -
2022 : Interactive Rationale Extraction for Text Classification »
Jiayi Dai · Mi-Young Kim · Randolph Goebel -
2022 : Fifteen-minute Competition Overview Video »
Tianpei Yang · Iuliia Kotseruba · Montgomery Alban · Amir Rasouli · Soheil Mohamad Alizadeh Shabestary · Randolph Goebel · Matthew Taylor · Liam Paull · Florian Shkurti -
2022 : Do As You Teach: A Multi-Teacher Approach to Self-Play in Deep Reinforcement Learning »
Chaitanya Kharyal · Tanmay Sinha · Vijaya Sai Krishna Gottipati · Srijita Das · Matthew Taylor -
2022 Workshop: Deep Reinforcement Learning Workshop »
Karol Hausman · Qi Zhang · Matthew Taylor · Martha White · Suraj Nair · Manan Tomar · Risto Vuorio · Ted Xiao · Zeyu Zheng · Manan Tomar -
2022 Spotlight: Lightning Talks 5A-3 »
Minting Pan · Xiang Chen · Wenhan Huang · Can Chang · Zhecheng Yuan · Jianzhun Shao · Yushi Cao · Peihao Chen · Ke Xue · Zhengrong Xue · Zhiqiang Lou · Xiangming Zhu · Lei Li · Zhiming Li · Kai Li · Jiacheng Xu · Dongyu Ji · Ni Mu · Kun Shao · Tianpei Yang · Kunyang Lin · Ningyu Zhang · Yunbo Wang · Lei Yuan · Bo Yuan · Hongchang Zhang · Jiajun Wu · Tianze Zhou · Xueqian Wang · Ling Pan · Yuhang Jiang · Xiaokang Yang · Xiaozhuan Liang · Hao Zhang · Weiwen Hu · Miqing Li · YAN ZHENG · Matthew Taylor · Huazhe Xu · Shumin Deng · Chao Qian · YI WU · Shuncheng He · Wenbing Huang · Chuanqi Tan · Zongzhang Zhang · Yang Gao · Jun Luo · Yi Li · Xiangyang Ji · Thomas Li · Mingkui Tan · Fei Huang · Yang Yu · Huazhe Xu · Dongge Wang · Jianye Hao · Chuang Gan · Yang Liu · Luo Si · Hangyu Mao · Huajun Chen · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: Multiagent Q-learning with Sub-Team Coordination »
Wenhan Huang · Kai Li · Kun Shao · Tianze Zhou · Matthew Taylor · Jun Luo · Dongge Wang · Hangyu Mao · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Workshop: Reinforcement Learning for Real Life (RL4RealLife) Workshop »
Yuxi Li · Emma Brunskill · MINMIN CHEN · Omer Gottesman · Lihong Li · Yao Liu · Zhiwei Tony Qin · Matthew Taylor -
2021 : Learning Representations for Pixel-based Control: What Matters and Why? »
Manan Tomar · Utkarsh A Mishra · Amy Zhang · Matthew Taylor -
2021 Workshop: Physical Reasoning and Inductive Biases for the Real World »
Krishna Murthy Jatavallabhula · Rika Antonova · Kevin Smith · Hsiao-Yu Tung · Florian Shkurti · Jeannette Bohg · Josh Tenenbaum -
2021 : NeurIPS RL Competitions Results Presentations »
Rohin Shah · Liam Paull · Tabitha Lee · Tim Rocktäschel · Heinrich Küttler · Sharada Mohanty · Manuel Wuethrich -
2021 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · David Silver · Matthew Taylor · Martha White · Srijita Das · Yuqing Du · Andrew Patterson · Manan Tomar · Olivia Watkins -
2021 : AI Driving Olympics + Q&A »
Andrea Censi · Liam Paull · Jacopo Tani · Emilio Frazzoli · Holger Caesar · Matthew Walter · Andrea Daniele · Sahika Genc · Sharada Mohanty -
2021 Poster: Iterative Teaching by Label Synthesis »
Weiyang Liu · Zhen Liu · Hanchen Wang · Liam Paull · Bernhard Schölkopf · Adrian Weller -
2020 : Conclusions and Wrap up »
Liam Paull -
2020 : Interviews with winners »
Liam Paull -
2020 : Live robot competition (LF, LFP, lFVM) »
Liam Paull -
2020 : Intro to Urban League (includes highlights from semifinals) »
Liam Paull -
2020 : Advanced Perception League »
Liam Paull -
2020 : Introduction to AIDO »
Liam Paull -
2020 : Contributed Talk: Maximum Reward Formulation In Reinforcement Learning »
Vijaya Sai Krishna Gottipati · Yashaswi Pathak · Rohan Nuttall · Sahir . · Raviteja Chunduru · Ahmed Touati · Sriram Ganapathi · Matthew Taylor · Sarath Chandar -
2020 Workshop: Differentiable computer vision, graphics, and physics in machine learning »
Krishna Murthy Jatavallabhula · Kelsey Allen · Victoria Dean · Johanna Hansen · Shuran Song · Florian Shkurti · Liam Paull · Derek Nowrouzezahrai · Josh Tenenbaum -
2020 Poster: Your GAN is Secretly an Energy-based Model and You Should Use Discriminator Driven Latent Sampling »
Tong Che · Ruixiang ZHANG · Jascha Sohl-Dickstein · Hugo Larochelle · Liam Paull · Yuan Cao · Yoshua Bengio -
2020 Poster: Look-ahead Meta Learning for Continual Learning »
Gunshi Gupta · Karmesh Yadav · Liam Paull -
2020 Oral: Look-ahead Meta Learning for Continual Learning »
Gunshi Gupta · Karmesh Yadav · Liam Paull -
2019 : Lunch break & Poster session »
Breandan Considine · Michael Innes · Du Phan · Dougal Maclaurin · Robin Manhaeve · Alexey Radul · Shashi Gowda · Ekansh Sharma · Eli Sennesh · Maxim Kochurov · Gordon Plotkin · Thomas Wiecki · Navjot Kukreja · Chung-chieh Shan · Matthew Johnson · Dan Belov · Neeraj Pradhan · Wannes Meert · Angelika Kimmig · Luc De Raedt · Brian Patton · Matthew Hoffman · Rif A. Saurous · Daniel Roy · Eli Bingham · Martin Jankowiak · Colin Carroll · Junpeng Lao · Liam Paull · Martin Abadi · Angel Rojas Jimenez · JP Chen -
2019 : AI Driving Olympics 3 »
Caglayan Dicle · Liam Paull · Jacopo Tani · Sunil Mallya · Sahika Genc · Kirsten Bowser · Tao Sun · Yunzhe Tao · Philippe Marcotte · Hsu-kuang Chiu · Eric Wolff -
2018 : Live competition The AI Driving Olympics: Introduction to Duckietown and the AI Driving Olympics »
Liam Paull · Jacopo Tani · Kirsten Bowser · Lin Jin · Cameron Peron -
2017 : Posters 1 »
J.P. Lewis · Housam Khalifa Bashier Babiker · Zhongang Qi · Laura Rieger · Ning Xie · Filip Dabek · Koushik Nagasubramanian · Bolei Zhou · Dieuwke Hupkes · CHUN-HAO CHANG · Pamela K Douglas · Enea Ceolini · Derek Doran · Yan Liu · Fuxin Li · Randolph Goebel -
2017 : Posters »
Shane Barratt · Alex Groce · Qi Yan · Sapan Agarwal · Fabian Offert · Bogdan Kulynych · Housam Khalifa Bashier Babiker · Petar Stojanov · Topi Paananen · Jose Marcio Luna · Gilmer Valdes · Jacqueline A Mauro · Daniel Chen · Baruch Schieber · Randolph Goebel · Jacob Bien