Timezone: »
The explosion in mobile data traffic together with the ever-increasing expectations for higher quality of service call for the development of new AI algorithms for wireless network optimization. In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand. Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context. Empirical results suggest that our proposed method will achieve important performance gains when deployed in the real network while satisfying practical constraints on computational efficiency.
Author Information
Miguel Suau (Delft University of Technology)
More from the Same Authors
-
2022 Poster: Distributed Influence-Augmented Local Simulators for Parallel MARL in Large Networked Systems »
Miguel Suau · Jinke He · Mustafa Mert Çelikok · Matthijs Spaan · Frans Oliehoek -
2020 Poster: Influence-Augmented Online Planning for Complex Environments »
Jinke He · Miguel Suau · Frans Oliehoek