Timezone: »
Introduction
Weiwei Yang · Joshua T Vogelstein · Onyema Osuagwu · Soledad Villar · Johnathan Flowers · Weishung Liu · Ronan Perry · Kaleab Alemayehu Kinfu · Teresa Huang
Tue Dec 14 06:00 AM -- 06:15 AM (PST) @
Author Information
Weiwei Yang (Microsoft Research Redmond)
Joshua T Vogelstein (The Johns Hopkins University)
Onyema Osuagwu (Morgan State University)
Soledad Villar (Johns Hopkins University)
Johnathan Flowers (Worcester State University)
Weishung Liu (Microsoft Research)
Ronan Perry (Max Planck Institute for Intelligent Systems)
Kaleab Alemayehu Kinfu (Johns Hopkins University)
Kaleab is a Ph.D. student at the Johns Hopkins University. He has a BSc. degree in Computer Science from Addis Ababa University and holds a triple Master's degree in Image Processing and Computer Vision from three European universities, namely Pazmany Peter Catholic University, Autonomous University of Madrid, and the University of Bordeaux. He is also an MSE graduate in Biomedical Engineering from Johns Hopkins. Kaleab's research interests lie at the intersection of Machine Learning and Computer Vision.
Teresa Huang (Johns Hopkins University)
More from the Same Authors
-
2021 : A simple equivariant machine learning method for dynamics based on scalars »
Weichi Yao · Kate Storey-Fisher · David W Hogg · Soledad Villar -
2021 : Constraints with Doug Burger, Alysson Muotri, Ralph-Etienne-Cummings, Florian Engert »
Doug Burger · Florian Engert · Ralph Etienne-Cummings · Soledad Villar · Teresa Huang -
2021 : Curiosity with Chelsea Finn, Celeste Kidd, Timothy Verstynen »
Celeste Kidd · Chelsea Finn · Timothy Verstynen · Johnathan Flowers -
2021 : Continual with Sujeeth Bharadwaj, Gabriel Silva, Eric Traut, Jane Wang »
Sujeeth Bharadwaj · Jane Wang · Weiwei Yang -
2022 : SE(3)-equivariant self-attention via invariant features »
Nan Chen · Soledad Villar -
2022 : The Value of Out-of-distribution Data »
Ashwin De Silva · Rahul Ramesh · Carey E Priebe · Pratik Chaudhari · Joshua T Vogelstein -
2022 : From Local to Global: Spectral-Inspired Graph Neural Networks »
Ningyuan Huang · Soledad Villar · Carey E Priebe · Da Zheng · Chengyue Huang · Lin Yang · Vladimir Braverman -
2022 : Keynote: Soledad Villar »
Soledad Villar -
2021 : Live Q&A Session 2 with Susan Athey, Yoshua Bengio, Sujeeth Bharadwaj, Jane Wang, Joshua Vogelstein, Weiwei Yang »
Susan Athey · Yoshua Bengio · Sujeeth Bharadwaj · Jane Wang · Weiwei Yang · Joshua T Vogelstein -
2021 : General Discussion 2 - What does the OOD problem mean to you and your field? with Anima Anandkumar, Terry Sejnowski, Chris White: General Discussion 2 »
Anima Anandkumar · Terry Sejnowski · Weiwei Yang · Joshua T Vogelstein -
2021 : Extended Live Q&A Session and Learning Salon with Joshua Vogelstein »
Joshua T Vogelstein -
2021 : Live Q&A Session 1 with Yoshua Bengio, Leyla Isik, Konrad Kording, Bernhard Scholkopf, Amit Sharma, Joshua Vogelstein, Weiwei Yang »
Yoshua Bengio · Leyla Isik · Konrad Kording · Bernhard Schölkopf · Joshua T Vogelstein · Weiwei Yang -
2021 : General Discussion 1 - What is out of distribution (OOD) generalization and why is it important? with Yoshua Bengio, Leyla Isik, Max Welling »
Yoshua Bengio · Leyla Isik · Max Welling · Joshua T Vogelstein · Weiwei Yang -
2021 Workshop: Out-of-distribution generalization and adaptation in natural and artificial intelligence »
Joshua T Vogelstein · Weiwei Yang · Soledad Villar · Zenna Tavares · Johnathan Flowers · Onyema Osuagwu · Weishung Liu -
2017 Workshop: BigNeuro 2017: Analyzing brain data from nano to macroscale »
Eva Dyer · Gregory Kiar · William Gray Roncal · · Konrad P Koerding · Joshua T Vogelstein -
2016 Workshop: Brains and Bits: Neuroscience meets Machine Learning »
Alyson Fletcher · Eva Dyer · Jascha Sohl-Dickstein · Joshua T Vogelstein · Konrad Koerding · Jakob H Macke -
2015 Workshop: BigNeuro 2015: Making sense of big neural data »
Eva Dyer · Joshua T Vogelstein · Konrad Koerding · Jeremy Freeman · Andreas S. Tolias