Timezone: »
Style transfer is a central problem of machine learning with numerous successful applications. In this work, we present a novel style transfer framework building upon infinite task learning and vector-valued reproducing kernel Hilbert spaces. We consider style transfer as a functional output regression task where the goal is to transform the input objects to a continuum of styles. The learnt mapping is governed by the choice of two kernels, one on the object space and one on the style space, providing flexibility to the approach. We instantiate the idea in emotion transfer where facial landmarks play the role of objects and styles correspond to emotions. The proposed approach provides a principled way to gain explicit control over the continuous style space, allowing to transform landmarks to emotions not seen during the training phase. We demonstrate the efficiency of the technique on popular facial emotion benchmarks, achieving low reconstruction cost.
Author Information
Alex Lambert (KU Leuven)
Sanjeel Parekh (Telecom Paris)
Zoltan Szabo (LSE)
[Homepage](https://zoltansz.github.io/)
Florence d'Alché-Buc (Télécom Paris, Institut Polytechnique de Paris)
More from the Same Authors
-
2021 Poster: A Framework to Learn with Interpretation »
Jayneel Parekh · Pavlo Mozharovskyi · Florence d'Alché-Buc -
2020 Poster: Hard Shape-Constrained Kernel Machines »
Pierre-Cyril Aubin-Frankowski · Zoltan Szabo -
2017 Workshop: Learning on Distributions, Functions, Graphs and Groups »
Florence d'Alché-Buc · Krikamol Muandet · Bharath Sriperumbudur · Zoltán Szabó -
2017 Poster: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2017 Oral: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2016 Workshop: Adaptive and Scalable Nonparametric Methods in Machine Learning »
Aaditya Ramdas · Arthur Gretton · Bharath Sriperumbudur · Han Liu · John Lafferty · Samory Kpotufe · Zoltán Szabó -
2016 Oral: Interpretable Distribution Features with Maximum Testing Power »
Wittawat Jitkrittum · Zoltán Szabó · Kacper P Chwialkowski · Arthur Gretton -
2016 Poster: Interpretable Distribution Features with Maximum Testing Power »
Wittawat Jitkrittum · Zoltán Szabó · Kacper P Chwialkowski · Arthur Gretton -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio