Timezone: »
Understanding and creating mathematics using natural mathematical language - the mixture of symbolic and natural language used by humans - is a challenging and important problem for driving progress in machine learning. As a step in this direction, we develop NaturalProofs, a multi-domain corpus of mathematical statements and their proofs, written in natural mathematical language. NaturalProofs unifies broad coverage, deep coverage, and low-resource mathematical sources, allowing for evaluating both in-distribution and zero-shot generalization. Using NaturalProofs, we benchmark strong neural methods on mathematical reference retrieval and generation tasks which test a system's ability to determine key results that appear in a proof. Large-scale sequence models show promise compared to classical information retrieval methods, yet their performance and out-of-domain generalization leave substantial room for improvement. NaturalProofs opens many avenues for research on challenging mathematical tasks.
Author Information
Sean Welleck (University of Washington)
Jiacheng Liu (Department of Computer Science, University of Washington)
Ronan Le Bras (Allen Institute for AI)
Hanna Hajishirzi (University of Washington)
Yejin Choi (University of Washington)
Kyunghyun Cho (Genentech | New York University)
Kyunghyun Cho is an associate professor of computer science and data science at New York University and a research scientist at Facebook AI Research. He was a postdoctoral fellow at the Université de Montréal until summer 2015 under the supervision of Prof. Yoshua Bengio, and received PhD and MSc degrees from Aalto University early 2014 under the supervision of Prof. Juha Karhunen, Dr. Tapani Raiko and Dr. Alexander Ilin. He tries his best to find a balance among machine learning, natural language processing, and life, but almost always fails to do so.
More from the Same Authors
-
2021 : CommonsenseQA 2.0: Exposing the Limits of AI through Gamification »
Alon Talmor · Ori Yoran · Ronan Le Bras · Chandra Bhagavatula · Yoav Goldberg · Yejin Choi · Jonathan Berant -
2021 : NaturalProofs: Mathematical Theorem Proving in Natural Language »
Sean Welleck · Jiacheng Liu · Ronan Le Bras · Hanna Hajishirzi · Yejin Choi · Kyunghyun Cho -
2021 : KLUE: Korean Language Understanding Evaluation »
Sungjoon Park · Jihyung Moon · Sungdong Kim · Won Ik Cho · Ji Yoon Han · Jangwon Park · Chisung Song · Junseong Kim · Youngsook Song · Taehwan Oh · Joohong Lee · Juhyun Oh · Sungwon Lyu · Younghoon Jeong · Inkwon Lee · Sangwoo Seo · Dongjun Lee · Hyunwoo Kim · Myeonghwa Lee · Seongbo Jang · Seungwon Do · Sunkyoung Kim · Kyungtae Lim · Jongwon Lee · Kyumin Park · Jamin Shin · Seonghyun Kim · Lucy Park · Alice Oh · Jung-Woo Ha · Kyunghyun Cho -
2021 : Towards Grounded Natural Language Proof Generation »
Sean Welleck · Jiacheng Liu · Yejin Choi -
2021 : Function-guided protein design by deep manifold sampling »
Vladimir Gligorijevic · Stephen Ra · Dan Berenberg · Richard Bonneau · Kyunghyun Cho -
2021 : Scientific Language Models for Biomedical Knowledge Base Completion: An Empirical Study »
Rahul Nadkarni · David Wadden · Iz Beltagy · Noah Smith · Hanna Hajishirzi · Tom Hope -
2022 : A Pareto-optimal compositional energy-based model for sampling and optimization of protein sequences »
Nataša Tagasovska · Nathan Frey · Andreas Loukas · Isidro Hotzel · Julien Lafrance-Vanasse · Ryan Kelly · Yan Wu · Arvind Rajpal · Richard Bonneau · Kyunghyun Cho · Stephen Ra · Vladimir Gligorijevic -
2022 : PropertyDAG: Multi-objective Bayesian optimization of partially ordered, mixed-variable properties for biological sequence design »
Ji Won Park · Samuel Stanton · Saeed Saremi · Andrew Watkins · Stephen Ra · Vladimir Gligorijevic · Kyunghyun Cho · Richard Bonneau -
2022 : Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs »
Albert Jiang · Sean Welleck · Jin Peng Zhou · Timothee Lacroix · Jiacheng Liu · Wenda Li · Mateja Jamnik · Guillaume Lample · Yuhuai Wu -
2022 : EquiFold: Protein Structure Prediction with a Novel Coarse-Grained Structure Representation »
Jae Hyeon Lee · Payman Yadollahpour · Andrew Watkins · Nathan Frey · Andrew Leaver-Fay · Stephen Ra · Vladimir Gligorijevic · Kyunghyun Cho · Aviv Regev · Richard Bonneau -
2022 : Information-Theoretic Evaluation of Free-Text Rationales with Conditional $\mathcal{V}$-Information »
Hanjie Chen · Faeze Brahman · Xiang Ren · Yangfeng Ji · Yejin Choi · Swabha Swayamdipta -
2022 : Mitigating input-causing confounding in multimodal learning via the backdoor adjustment »
Taro Makino · Krzysztof Geras · Kyunghyun Cho -
2022 : Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling »
Romain Lopez · Nataša Tagasovska · Stephen Ra · Kyunghyun Cho · Jonathan Pritchard · Aviv Regev -
2022 : EquiFold: Protein Structure Prediction with a Novel Coarse-Grained Structure Representation »
Jae Hyeon Lee · Payman Yadollahpour · Andrew Watkins · Nathan Frey · Andrew Leaver-Fay · Stephen Ra · Vladimir Gligorijevic · Kyunghyun Cho · Aviv Regev · Richard Bonneau -
2022 Workshop: MATH-AI: Toward Human-Level Mathematical Reasoning »
Pan Lu · Swaroop Mishra · Sean Welleck · Yuhuai Wu · Hannaneh Hajishirzi · Percy Liang -
2022 Workshop: Robustness in Sequence Modeling »
Nathan Ng · Haoran Zhang · Vinith Suriyakumar · Chantal Shaib · Kyunghyun Cho · Yixuan Li · Alice Oh · Marzyeh Ghassemi -
2022 Poster: Generative multitask learning mitigates target-causing confounding »
Taro Makino · Krzysztof Geras · Kyunghyun Cho -
2022 Poster: COLD Decoding: Energy-based Constrained Text Generation with Langevin Dynamics »
Lianhui Qin · Sean Welleck · Daniel Khashabi · Yejin Choi -
2022 Poster: QUARK: Controllable Text Generation with Reinforced Unlearning »
Ximing Lu · Sean Welleck · Jack Hessel · Liwei Jiang · Lianhui Qin · Peter West · Prithviraj Ammanabrolu · Yejin Choi -
2022 Poster: NaturalProver: Grounded Mathematical Proof Generation with Language Models »
Sean Welleck · Jiacheng Liu · Ximing Lu · Hannaneh Hajishirzi · Yejin Choi -
2021 : Towards Grounded Natural Language Proof Generation »
Jiacheng Liu -
2021 : Understanding and Knowledge Extraction from Mathematical and Scientific Text »
Hanna Hajishirzi -
2021 : Poster Session 1 »
Jiaqi Chen · Tanglin Xia · Sean Welleck · Jiacheng Liu · Ran Gong · Shifeng Huang · Wei Yu · Tracy Jia Shen -
2021 Workshop: Math AI for Education (MATHAI4ED): Bridging the Gap Between Research and Smart Education »
Pan Lu · Yuhuai Wu · Sean Welleck · Xiaodan Liang · Eric Xing · James McClelland -
2021 : Panel Discussion »
Pascal Poupart · Ali Ghodsi · Luke Zettlemoyer · Sameer Singh · Kevin Duh · Yejin Choi · Lu Hou -
2021 : Battling with Larger Models through Grounding and Searching »
Yejin Choi -
2021 : Function-guided protein design by deep manifold sampling »
Vladimir Gligorijevic · Stephen Ra · Dan Berenberg · Richard Bonneau · Kyunghyun Cho -
2021 Oral: MERLOT: Multimodal Neural Script Knowledge Models »
Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi -
2021 Poster: Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals »
Lang Liu · Krishna Pillutla · Sean Welleck · Sewoong Oh · Yejin Choi · Zaid Harchaoui -
2021 Poster: True Few-Shot Learning with Language Models »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2021 Poster: MERLOT: Multimodal Neural Script Knowledge Models »
Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi -
2021 Poster: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2021 Poster: One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval »
Akari Asai · Xinyan Yu · Jungo Kasai · Hanna Hajishirzi -
2021 : CommonsenseQA 2.0: Exposing the Limits of AI through Gamification »
Alon Talmor · Ori Yoran · Ronan Le Bras · Chandra Bhagavatula · Yoav Goldberg · Yejin Choi · Jonathan Berant -
2021 Oral: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 : QA: Yejin Choi »
Yejin Choi -
2020 : Invited Talk: Yejin Choi »
Yejin Choi -
2020 : Adversarial, Socially Aware, and Commonsensical Data »
Yejin Choi -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Workshop: Emergent Communication: Towards Natural Language »
Abhinav Gupta · Michael Noukhovitch · Cinjon Resnick · Natasha Jaques · Angelos Filos · Marie Ossenkopf · Angeliki Lazaridou · Jakob Foerster · Ryan Lowe · Douwe Kiela · Kyunghyun Cho -
2019 Workshop: Context and Compositionality in Biological and Artificial Neural Systems »
Javier Turek · Shailee Jain · Alexander Huth · Leila Wehbe · Emma Strubell · Alan Yuille · Tal Linzen · Christopher Honey · Kyunghyun Cho -
2019 : Invited Talk (Yejin Choi) »
Yejin Choi -
2019 : Yejin Choi »
Yejin Choi -
2019 Poster: Defending Against Neural Fake News »
Rowan Zellers · Ari Holtzman · Hannah Rashkin · Yonatan Bisk · Ali Farhadi · Franziska Roesner · Yejin Choi -
2019 Poster: Can Unconditional Language Models Recover Arbitrary Sentences? »
Nishant Subramani · Samuel Bowman · Kyunghyun Cho -
2019 Tutorial: Imitation Learning and its Application to Natural Language Generation »
Kyunghyun Cho · Hal Daumé III -
2018 Workshop: Emergent Communication Workshop »
Jakob Foerster · Angeliki Lazaridou · Ryan Lowe · Igor Mordatch · Douwe Kiela · Kyunghyun Cho -
2018 Poster: Loss Functions for Multiset Prediction »
Sean Welleck · Zixin Yao · Yu Gai · Jialin Mao · Zheng Zhang · Kyunghyun Cho -
2017 Workshop: Emergent Communication Workshop »
Jakob Foerster · Igor Mordatch · Angeliki Lazaridou · Kyunghyun Cho · Douwe Kiela · Pieter Abbeel -
2017 Poster: Saliency-based Sequential Image Attention with Multiset Prediction »
Sean Welleck · Jialin Mao · Kyunghyun Cho · Zheng Zhang -
2016 Poster: End-to-End Goal-Driven Web Navigation »
Rodrigo Nogueira · Kyunghyun Cho -
2016 Poster: Iterative Refinement of the Approximate Posterior for Directed Belief Networks »
R Devon Hjelm · Russ Salakhutdinov · Kyunghyun Cho · Nebojsa Jojic · Vince Calhoun · Junyoung Chung -
2015 Workshop: Multimodal Machine Learning »
Louis-Philippe Morency · Tadas Baltrusaitis · Aaron Courville · Kyunghyun Cho -
2015 Poster: Attention-Based Models for Speech Recognition »
Jan K Chorowski · Dzmitry Bahdanau · Dmitriy Serdyuk · Kyunghyun Cho · Yoshua Bengio -
2015 Spotlight: Attention-Based Models for Speech Recognition »
Jan K Chorowski · Dzmitry Bahdanau · Dmitriy Serdyuk · Kyunghyun Cho · Yoshua Bengio -
2014 Poster: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization »
Yann N Dauphin · Razvan Pascanu · Caglar Gulcehre · Kyunghyun Cho · Surya Ganguli · Yoshua Bengio -
2014 Poster: On the Number of Linear Regions of Deep Neural Networks »
Guido F Montufar · Razvan Pascanu · Kyunghyun Cho · Yoshua Bengio -
2014 Demonstration: Neural Machine Translation »
Bart van Merriënboer · Kyunghyun Cho · Dzmitry Bahdanau · Yoshua Bengio -
2014 Poster: Iterative Neural Autoregressive Distribution Estimator NADE-k »
Tapani Raiko · Yao Li · Kyunghyun Cho · Yoshua Bengio