Timezone: »
Uncertainty estimation in deep learning has recently emerged as a crucial area of interest to advance reliability and robustness in safety-critical applications. While there have been many proposed methods that either focus on distance-aware model uncertainties for out-of-distribution detection or on input-dependent label uncertainties for in-distribution calibration, both of these types of uncertainty are often necessary. In this work, we propose the HetSNGP method for jointly modeling the model and data uncertainty. We show that our proposed model affords a favorable combination between these two complementary types of uncertainty and thus outperforms the baseline methods on some challenging out-of-distribution datasets, including CIFAR-100C, Imagenet-C, and Imagenet-A. Moreover, we propose HetSNGP Ensemble, an ensembled version of our method which adds an additional type of uncertainty and also outperforms other ensemble baselines.
Author Information
Vincent Fortuin (ETH Zürich)
Mark Collier (Google)
Florian Wenzel (---)
James Allingham (University of Cambridge)
Jeremiah Liu (Google Research / Harvard)
Dustin Tran (Google Brain)
Balaji Lakshminarayanan (Google Brain)
Jesse Berent
Rodolphe Jenatton (Amazon)
Effrosyni Kokiopoulou (Google AI)
More from the Same Authors
-
2021 Spotlight: Repulsive Deep Ensembles are Bayesian »
Francesco D'Angelo · Vincent Fortuin -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : PCA Subspaces Are Not Always Optimal for Bayesian Learning »
Alexandre Bense · Amir Joudaki · Tim G. J. Rudner · Vincent Fortuin -
2021 : Understanding and Improving Robustness of VisionTransformers through patch-based NegativeAugmentation »
Yao Qin · Chiyuan Zhang · Ting Chen · Balaji Lakshminarayanan · Alex Beutel · Xuezhi Wang -
2021 : BEDS-Bench: Behavior of EHR-models under Distributional Shift - A Benchmark »
Anand Avati · Martin Seneviratne · Yuan Xue · Zhen Xu · Balaji Lakshminarayanan · Andrew Dai -
2021 : Reliable Graph Neural Networks for Drug Discovery Under Distributional Shift »
Kehang Han · Balaji Lakshminarayanan · Jeremiah Liu -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Depth Uncertainty Networks for Active Learning »
Chelsea Murray · James Allingham · Javier Antorán · José Miguel Hernández-Lobato -
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Pathologies in Priors and Inference for Bayesian Transformers »
Tristan Cinquin · Alexander Immer · Max Horn · Vincent Fortuin -
2022 : Out-of-Distribution Detection and Selective Generation for Conditional Language Models »
Jie Ren · Jiaming Luo · Yao Zhao · Kundan Krishna · Mohammad Saleh · Balaji Lakshminarayanan · Peter Liu -
2022 : Reliability benchmarks for image segmentation »
Estefany Kelly Buchanan · Michael Dusenberry · Jie Ren · Kevin Murphy · Balaji Lakshminarayanan · Dustin Tran -
2022 : Pushing the Accuracy-Fairness Tradeoff Frontier with Introspective Self-play »
Jeremiah Liu · Krishnamurthy Dvijotham · Jihyeon Lee · Quan Yuan · Martin Strobel · Balaji Lakshminarayanan · Deepak Ramachandran -
2022 : Learning Generative Models with Invariance to Symmetries »
James Allingham · Javier Antorán · Shreyas Padhy · Eric Nalisnick · José Miguel Hernández-Lobato -
2022 : Improving Zero-shot Generalization and Robustness of Multi-modal Models »
Yunhao Ge · Jie Ren · Ming-Hsuan Yang · Yuxiao Wang · Andrew Gallagher · Hartwig Adam · Laurent Itti · Balaji Lakshminarayanan · Jiaping Zhao -
2022 : Improving the Robustness of Conditional Language Models by Detecting and Removing Input Noise »
Kundan Krishna · Yao Zhao · Jie Ren · Balaji Lakshminarayanan · Jiaming Luo · Mohammad Saleh · Peter Liu -
2022 : Out-of-Distribution Detection and Selective Generation for Conditional Language Models »
Jie Ren · Jiaming Luo · Yao Zhao · Kundan Krishna · Mohammad Saleh · Balaji Lakshminarayanan · Peter Liu -
2022 Poster: Understanding and Improving Robustness of Vision Transformers through Patch-based Negative Augmentation »
Yao Qin · Chiyuan Zhang · Ting Chen · Balaji Lakshminarayanan · Alex Beutel · Xuezhi Wang -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 Poster: Exploring the Limits of Out-of-Distribution Detection »
Stanislav Fort · Jie Ren · Balaji Lakshminarayanan -
2021 Poster: Repulsive Deep Ensembles are Bayesian »
Francesco D'Angelo · Vincent Fortuin -
2021 Poster: Soft Calibration Objectives for Neural Networks »
Archit Karandikar · Nicholas Cain · Dustin Tran · Balaji Lakshminarayanan · Jonathon Shlens · Michael Mozer · Becca Roelofs -
2021 Poster: Scaling Vision with Sparse Mixture of Experts »
Carlos Riquelme · Joan Puigcerver · Basil Mustafa · Maxim Neumann · Rodolphe Jenatton · André Susano Pinto · Daniel Keysers · Neil Houlsby -
2021 Poster: Revisiting the Calibration of Modern Neural Networks »
Matthias Minderer · Josip Djolonga · Rob Romijnders · Frances Hubis · Xiaohua Zhai · Neil Houlsby · Dustin Tran · Mario Lucic -
2020 Poster: Bayesian Deep Ensembles via the Neural Tangent Kernel »
Bobby He · Balaji Lakshminarayanan · Yee Whye Teh -
2020 Poster: Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness »
Jeremiah Liu · Zi Lin · Shreyas Padhy · Dustin Tran · Tania Bedrax Weiss · Balaji Lakshminarayanan -
2020 Poster: Hyperparameter Ensembles for Robustness and Uncertainty Quantification »
Florian Wenzel · Jasper Snoek · Dustin Tran · Rodolphe Jenatton -
2020 Poster: Depth Uncertainty in Neural Networks »
Javier Antorán · James Allingham · José Miguel Hernández-Lobato -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning Q&A »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Poster: Accurate Uncertainty Estimation and Decomposition in Ensemble Learning »
Jeremiah Liu · John Paisley · Marianthi-Anna Kioumourtzoglou · Brent Coull -
2019 Poster: Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift »
Jasper Snoek · Yaniv Ovadia · Emily Fertig · Balaji Lakshminarayanan · Sebastian Nowozin · D. Sculley · Joshua Dillon · Jie Ren · Zachary Nado -
2019 Poster: Likelihood Ratios for Out-of-Distribution Detection »
Jie Ren · Peter Liu · Emily Fertig · Jasper Snoek · Ryan Poplin · Mark Depristo · Joshua Dillon · Balaji Lakshminarayanan -
2018 : Poster Session »
Lorenzo Masoero · Tammo Rukat · Runjing Liu · Sayak Ray Chowdhury · Daniel Coelho de Castro · Claudia Wehrhahn · Feras Saad · Archit Verma · Kelvin Hsu · Irineo Cabreros · Sandhya Prabhakaran · Yiming Sun · Maxime Rischard · Linfeng Liu · Adam Farooq · Jeremiah Liu · Melanie F. Pradier · Diego Romeres · Neill Campbell · Kai Xu · Mehmet M Dundar · Tucker Keuter · Prashnna Gyawali · Eli Sennesh · Alessandro De Palma · Daniel Flam-Shepherd · Takatomi Kubo -
2018 : TBC 8 »
Balaji Lakshminarayanan -
2017 : Contributed talk: Scalable Logit Gaussian Process Classification »
Florian Wenzel -
2017 Poster: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles »
Balaji Lakshminarayanan · Alexander Pritzel · Charles Blundell -
2017 Spotlight: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles »
Balaji Lakshminarayanan · Alexander Pritzel · Charles Blundell -
2017 Poster: Robust Hypothesis Test for Nonlinear Effect with Gaussian Processes »
Jeremiah Liu · Brent Coull -
2015 : Mondrian Forests for Large-Scale regression when uncertainty matters »
Balaji Lakshminarayanan -
2015 : Variational Gaussian Process »
Dustin Tran -
2015 : Finding Sparse Features in Strongly Confounded Medial Data »
Stephan Mandt · Florian Wenzel -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: Copula variational inference »
Dustin Tran · David Blei · Edo M Airoldi -
2014 Poster: Distributed Bayesian Posterior Sampling via Moment Sharing »
Minjie Xu · Balaji Lakshminarayanan · Yee Whye Teh · Jun Zhu · Bo Zhang -
2014 Poster: Mondrian Forests: Efficient Online Random Forests »
Balaji Lakshminarayanan · Daniel Roy · Yee Whye Teh