Timezone: »
A learning method is self-certified if it uses all available data to simultaneously learn a predictor and certify its quality with a statistical certificate that is valid on unseen data. Recent work has shown that neural network models trained by optimising PAC-Bayes bounds lead not only to accurate predictors, but also to tight risk certificates, bearing promise towards self-certified learning. In this context, learning and certification strategies based on PAC-Bayes bounds are especially attractive due to their ability to leverage all data to learn a posterior and simultaneously certify its risk. In this paper, we assess the progress towards self-certification in neural networks learnt by PAC-Bayes inspired objectives. We empirically compare (on 4 classification datasets) classical test set bounds for deterministic predictors and a PAC-Bayes bound for randomised self-certified predictors. We show that in data starvation regimes, holding out data for the test set bounds adversely affects generalisation performance, while learning and certification strategies based on PAC-Bayes bounds do not suffer from this drawback. We find that probabilistic neural networks learnt by PAC-Bayes inspired objectives lead to certificates that can be surprisinglycompetitive with commonly used test set bounds.
Author Information
Maria Perez-Ortiz (University College London)
Omar Rivasplata (IMSS UCL)
My top-level areas of interest are statistical learning theory, machine learning, probability and statistics. These days I am very interested in deep learning and reinforcement learning. I am a Senior Research Fellow at the Department of Statistical Science, University College London. Before my current post I was for a few months at the Department of Mathematics at UCL. Previously I was for a few years at the Department of Computer Science at UCL, where I did research studies in statistical machine learning, sponsored by DeepMind. In parallel with these studies I was a research scientist intern at DeepMind for three years. Back in the day I studied undergraduate maths (BSc 2000, Pontificia Universidad Católica del Perú) and graduate maths (MSc 2005, PhD 2012, University of Alberta). I've lived in Peru, in Canada, and now I'm based in the UK.
Emilio Parrado-Hernández
Benjamin Guedj (Inria & University College London)
Benjamin Guedj is a tenured research scientist at Inria since 2014, affiliated to the Lille - Nord Europe research centre in France. He is also affiliated with the mathematics department of the University of Lille. Since 2018, he is a Principal Research Fellow at the Centre for Artificial Intelligence and Department of Computer Science at University College London. He is also a visiting researcher at The Alan Turing Institute. Since 2020, he is the founder and scientific director of The Inria London Programme, a strategic partnership between Inria and UCL as part of a France-UK scientific initiative. He obtained his Ph.D. in mathematics in 2013 from UPMC (Université Pierre & Marie Curie, France) under the supervision of Gérard Biau and Éric Moulines. Prior to that, he was a research assistant at DTU Compute (Denmark). His main line of research is in statistical machine learning, both from theoretical and algorithmic perspectives. He is primarily interested in the design, analysis and implementation of statistical machine learning methods for high dimensional problems, mainly using the PAC-Bayesian theory.
John Shawe-Taylor (UCL)
John Shawe-Taylor has contributed to fields ranging from graph theory through cryptography to statistical learning theory and its applications. However, his main contributions have been in the development of the analysis and subsequent algorithmic definition of principled machine learning algorithms founded in statistical learning theory. This work has helped to drive a fundamental rebirth in the field of machine learning with the introduction of kernel methods and support vector machines, driving the mapping of these approaches onto novel domains including work in computer vision, document classification, and applications in biology and medicine focussed on brain scan, immunity and proteome analysis. He has published over 300 papers and two books that have together attracted over 60000 citations. He has also been instrumental in assembling a series of influential European Networks of Excellence. The scientific coordination of these projects has influenced a generation of researchers and promoted the widespread uptake of machine learning in both science and industry that we are currently witnessing.
More from the Same Authors
-
2021 : Towards Better Visual Explanations for Deep ImageClassifiers »
Agnieszka Grabska-Barwinska · Amal Rannen-Triki · Omar Rivasplata · András György -
2022 : Comparing the carbon costs and benefits of low-resource solar nowcasting »
Ben Dixon · Jacob Bieker · Maria Perez-Ortiz -
2023 Poster: Learning via Wasserstein-Based High Probability Generalization Bounds »
Paul Viallard · Maxime Haddouche · Umut Simsekli · Benjamin Guedj -
2022 Poster: KSD Aggregated Goodness-of-fit Test »
Antonin Schrab · Benjamin Guedj · Arthur Gretton -
2022 Poster: Efficient Aggregated Kernel Tests using Incomplete $U$-statistics »
Antonin Schrab · Ilmun Kim · Benjamin Guedj · Arthur Gretton -
2022 Poster: On Margins and Generalisation for Voting Classifiers »
Felix Biggs · Valentina Zantedeschi · Benjamin Guedj -
2022 Poster: Online PAC-Bayes Learning »
Maxime Haddouche · Benjamin Guedj -
2021 : [S14] Towards Better Visual Explanations for Deep ImageClassifiers »
Agnieszka Grabska-Barwinska · Amal Rannen-Triki · Omar Rivasplata · András György -
2021 Poster: On the Role of Optimization in Double Descent: A Least Squares Study »
Ilja Kuzborskij · Csaba Szepesvari · Omar Rivasplata · Amal Rannen-Triki · Razvan Pascanu -
2021 Poster: Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound »
Valentina Zantedeschi · Paul Viallard · Emilie Morvant · Rémi Emonet · Amaury Habrard · Pascal Germain · Benjamin Guedj -
2020 Poster: PAC-Bayes Analysis Beyond the Usual Bounds »
Omar Rivasplata · Ilja Kuzborskij · Csaba Szepesvari · John Shawe-Taylor -
2020 Poster: PAC-Bayesian Bound for the Conditional Value at Risk »
Zakaria Mhammedi · Benjamin Guedj · Robert Williamson -
2020 Poster: Logarithmic Pruning is All You Need »
Laurent Orseau · Marcus Hutter · Omar Rivasplata -
2020 Spotlight: Logarithmic Pruning is All You Need »
Laurent Orseau · Marcus Hutter · Omar Rivasplata -
2020 Spotlight: PAC-Bayesian Bound for the Conditional Value at Risk »
Zakaria Mhammedi · Benjamin Guedj · Robert Williamson -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: PAC-Bayes Un-Expected Bernstein Inequality »
Zakaria Mhammedi · Peter Grünwald · Benjamin Guedj -
2019 Poster: Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks »
Gaël Letarte · Pascal Germain · Benjamin Guedj · Francois Laviolette -
2018 Poster: PAC-Bayes bounds for stable algorithms with instance-dependent priors »
Omar Rivasplata · Emilio Parrado-Hernandez · John Shawe-Taylor · Shiliang Sun · Csaba Szepesvari -
2018 Poster: Empirical Risk Minimization Under Fairness Constraints »
Michele Donini · Luca Oneto · Shai Ben-David · John Shawe-Taylor · Massimiliano Pontil -
2018 Tutorial: Statistical Learning Theory: a Hitchhiker's Guide »
John Shawe-Taylor · Omar Rivasplata -
2017 : Concluding remarks »
Francis Bach · Benjamin Guedj · Pascal Germain -
2017 : John Shawe-Taylor - Distribution Dependent Priors for Stable Learning »
John Shawe-Taylor -
2017 : An Efficient Method to Impose Fairness in Linear Models »
Massimiliano Pontil · John Shawe-Taylor -
2017 : Overture »
Benjamin Guedj · Francis Bach · Pascal Germain -
2017 Workshop: (Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights »
Benjamin Guedj · Pascal Germain · Francis Bach -
2017 Workshop: Workshop on Prioritising Online Content »
John Shawe-Taylor · Massimiliano Pontil · Nicolò Cesa-Bianchi · Emine Yilmaz · Chris Watkins · Sebastian Riedel · Marko Grobelnik -
2017 Workshop: From 'What If?' To 'What Next?' : Causal Inference and Machine Learning for Intelligent Decision Making »
Ricardo Silva · Panagiotis Toulis · John Shawe-Taylor · Alexander Volfovsky · Thorsten Joachims · Lihong Li · Nathan Kallus · Adith Swaminathan -
2016 Workshop: "What If?" Inference and Learning of Hypothetical and Counterfactual Interventions in Complex Systems »
Ricardo Silva · John Shawe-Taylor · Adith Swaminathan · Thorsten Joachims -
2014 Poster: Multilabel Structured Output Learning with Random Spanning Trees of Max-Margin Markov Networks »
Mario Marchand · Hongyu Su · Emilie Morvant · Juho Rousu · John Shawe-Taylor -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2011 Workshop: New Frontiers in Model Order Selection »
Yevgeny Seldin · Yacov Crammer · Nicolò Cesa-Bianchi · Francois Laviolette · John Shawe-Taylor -
2011 Poster: PAC-Bayesian Analysis of Contextual Bandits »
Yevgeny Seldin · Peter Auer · Francois Laviolette · John Shawe-Taylor · Ronald Ortner -
2010 Talk: Opening Remarks and Awards »
Richard Zemel · Terrence Sejnowski · John Shawe-Taylor -
2009 Workshop: Grammar Induction, Representation of Language and Language Learning »
Alex Clark · Dorota Glowacka · John Shawe-Taylor · Yee Whye Teh · Chris J Watkins -
2008 Workshop: Learning from Multiple Sources »
David R Hardoon · Gayle Leen · Samuel Kaski · John Shawe-Taylor -
2008 Workshop: New Challanges in Theoretical Machine Learning: Data Dependent Concept Spaces »
Maria-Florina F Balcan · Shai Ben-David · Avrim Blum · Kristiaan Pelckmans · John Shawe-Taylor -
2008 Poster: Theory of matching pursuit »
Zakria Hussain · John Shawe-Taylor -
2007 Workshop: Music, Brain and Cognition. Part 1: Learning the Structure of Music and Its Effects On the Brain »
David R Hardoon · Eduardo Reck-Miranda · John Shawe-Taylor -
2007 Poster: Variational Inference for Diffusion Processes »
Cedric Archambeau · Manfred Opper · Yuan Shen · Dan Cornford · John Shawe-Taylor -
2006 Workshop: Dynamical Systems, Stochastic Processes and Bayesian Inference »
Manfred Opper · Cedric Archambeau · John Shawe-Taylor -
2006 Poster: Tighter PAC-Bayes Bounds »
Amiran Ambroladze · Emilio Parrado-Hernandez · John Shawe-Taylor