Timezone: »

 
Decomposing Representations for Deterministic Uncertainty Estimation
Haiwen Huang · Joost van Amersfoort · Yarin Gal
Event URL: https://openreview.net/forum?id=NUgEE4S_8gJ »

Uncertainty estimation is a key component in any deployed machine learning system. One way to evaluate uncertainty estimation is using “out-of-distribution” (OoD) detection, that is, distinguishing between the training data distribution and an unseen different data distribution using uncertainty. In this work, we show that current feature density based uncertainty estimators cannot perform well consistently across different OoD detection settings. To solve this, we propose to decompose the learned representations and integrate the uncertainties estimated on them separately. Through experiments, we demonstrate that we can greatly improve the performance and the interpretability of the uncertainty estimation.

Author Information

Haiwen Huang (University of Oxford)
Joost van Amersfoort (University of Oxford)
Yarin Gal (University of Oxford)
Yarin Gal

Yarin leads the Oxford Applied and Theoretical Machine Learning (OATML) group. He is an Associate Professor of Machine Learning at the Computer Science department, University of Oxford. He is also the Tutorial Fellow in Computer Science at Christ Church, Oxford, and a Turing Fellow at the Alan Turing Institute, the UK’s national institute for data science and artificial intelligence. Prior to his move to Oxford he was a Research Fellow in Computer Science at St Catharine’s College at the University of Cambridge. He obtained his PhD from the Cambridge machine learning group, working with Prof Zoubin Ghahramani and funded by the Google Europe Doctoral Fellowship. He made substantial contributions to early work in modern Bayesian deep learning—quantifying uncertainty in deep learning—and developed ML/AI tools that can inform their users when the tools are “guessing at random”. These tools have been deployed widely in industry and academia, with the tools used in medical applications, robotics, computer vision, astronomy, in the sciences, and by NASA. Beyond his academic work, Yarin works with industry on deploying robust ML tools safely and responsibly. He co-chairs the NASA FDL AI committee, and is an advisor with Canadian medical imaging company Imagia, Japanese robotics company Preferred Networks, as well as numerous startups.

More from the Same Authors