Timezone: »
Gradient flows are a powerful tool for optimizing functionals in general metric spaces, including the space of probabilities endowed with the Wasserstein metric. A typical approach to solving this optimization problem relies on its connection to the dynamic formulation of optimal transport and the celebrated Jordan-Kinderlehrer-Otto (JKO) scheme. However, this formulation involves optimization over convex functions, which is challenging, especially in high dimensions. In this work, we propose an approach that relies on the recently introduced input-convex neural networks (ICNN) to parameterize the space of convex functions in order to approximate the JKO scheme, as well as in designing functionals over measures that enjoy convergence guarantees. We derive a computationally efficient implementation of this JKO-ICNN framework and use various experiments to demonstrate its feasibility and validity in approximating solutions of low-dimensional partial differential equations with known solutions. We also explore the use of our JKO-ICNN approach in high dimensions with an experiment in controlled generation for molecular discovery.
Author Information
David Alvarez-Melis (Microsoft Research)
Yair Schiff (IBM)
Youssef Mroueh (IBM T.J Watson Research Center)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : Optimizing Functionals on the Space of Probabilities with Input Convex Neural Network »
Dates n/a. Room
More from the Same Authors
-
2021 Spotlight: Measuring Generalization with Optimal Transport »
Ching-Yao Chuang · Youssef Mroueh · Kristjan Greenewald · Antonio Torralba · Stefanie Jegelka -
2022 : Neural Unbalanced Optimal Transport via Cycle-Consistent Semi-Couplings »
Frederike Lübeck · Charlotte Bunne · Gabriele Gut · Jacobo Sarabia del Castillo · Lucas Pelkmans · David Alvarez-Melis -
2022 : Neural Unbalanced Optimal Transport via Cycle-Consistent Semi-Couplings »
Frederike Lübeck · Charlotte Bunne · Gabriele Gut · Jacobo Sarabia del Castillo · Lucas Pelkmans · David Alvarez-Melis -
2022 Spotlight: Are GANs overkill for NLP? »
David Alvarez-Melis · Vikas Garg · Adam Kalai -
2022 : Generating Synthetic Datasets by Interpolating along Generalized Geodesics »
Jiaojiao Fan · David Alvarez-Melis -
2022 Poster: Are GANs overkill for NLP? »
David Alvarez-Melis · Vikas Garg · Adam Kalai -
2021 Poster: Predicting Deep Neural Network Generalization with Perturbation Response Curves »
Yair Schiff · Brian Quanz · Payel Das · Pin-Yu Chen -
2021 Poster: Measuring Generalization with Optimal Transport »
Ching-Yao Chuang · Youssef Mroueh · Kristjan Greenewald · Antonio Torralba · Stefanie Jegelka -
2021 Poster: Separation Results between Fixed-Kernel and Feature-Learning Probability Metrics »
Carles Domingo i Enrich · Youssef Mroueh -
2021 Oral: Separation Results between Fixed-Kernel and Feature-Learning Probability Metrics »
Carles Domingo i Enrich · Youssef Mroueh -
2020 : Spotlight: Characterizing the Latent Space of Molecular Generative Models with Persistent Homology Metrics »
Yair Schiff · Payel Das · Vijil Chenthamarakshan · Karthikeyan Natesan Ramamurthy -
2020 Poster: Unbalanced Sobolev Descent »
Youssef Mroueh · Mattia Rigotti -
2020 Poster: A Decentralized Parallel Algorithm for Training Generative Adversarial Nets »
Mingrui Liu · Wei Zhang · Youssef Mroueh · Xiaodong Cui · Jarret Ross · Tianbao Yang · Payel Das -
2020 Poster: Geometric Dataset Distances via Optimal Transport »
David Alvarez-Melis · Nicolo Fusi -
2019 : Poster session »
Jindong Gu · Alice Xiang · Atoosa Kasirzadeh · Zhiwei Han · Omar U. Florez · Frederik Harder · An-phi Nguyen · Amir Hossein Akhavan Rahnama · Michele Donini · Dylan Slack · Junaid Ali · Paramita Koley · Michiel Bakker · Anna Hilgard · Hailey James · Gonzalo Ramos · Jialin Lu · Jingying Yang · Margarita Boyarskaya · Martin Pawelczyk · Kacper Sokol · Mimansa Jaiswal · Umang Bhatt · David Alvarez-Melis · Aditya Grover · Charles Marx · Mengjiao (Sherry) Yang · Jingyan Wang · Gökhan Çapan · Hanchen Wang · Steffen Grünewälder · Moein Khajehnejad · Gourab Patro · Russell Kunes · Samuel Deng · Yuanting Liu · Luca Oneto · Mengze Li · Thomas Weber · Stefan Matthes · Duy Patrick Tu -
2019 Poster: Sobolev Independence Criterion »
Youssef Mroueh · Tom Sercu · Mattia Rigotti · Inkit Padhi · Cicero Nogueira dos Santos -
2018 Poster: Towards Robust Interpretability with Self-Explaining Neural Networks »
David Alvarez-Melis · Tommi Jaakkola -
2017 : Structured Optimal Transport (with T. Jaakkola, S. Jegelka) »
David Alvarez-Melis -
2017 Poster: Fisher GAN »
Youssef Mroueh · Tom Sercu