Timezone: »
Multi-marginal optimal transport enables one to compare multiple probability measures, which increasingly finds application in multi-task learning problems.One practical limitation of multi-marginal transport is computational scalability in the number of measures, samples and dimensionality.In this work, we propose a multi-marginal optimal transport paradigm based on random one-dimensional projections, whose (generalized) distance we term the \emph{sliced multi-marginal Wasserstein distance}.To construct this distance, we introduce a characterization of the one-dimensional multi-marginal Kantorovich problem and use it to highlight a number of properties of the sliced multi-marginal Wasserstein distance. In particular, we show that (i) the sliced multi-marginal Wasserstein distance is a (generalized) metric that induces the same topology as the standard Wasserstein distance, (ii) it admits a dimension-free sample complexity, (iii) it is tightly connected with the problem of barycentric averaging under the sliced-Wasserstein metric.We conclude by illustrating the sliced multi-marginal Wasserstein on multi-task density estimation and multi-dynamics reinforcement learning problems.
Author Information
Samuel Cohen (University College London)
Alexander Terenin (University of Cambridge)
Yannik Pitcan (UC Berkeley)
Brandon Amos (Carnegie Mellon University)
Marc Deisenroth (University College London)

Professor Marc Deisenroth is the DeepMind Chair in Artificial Intelligence at University College London and the Deputy Director of UCL's Centre for Artificial Intelligence. He also holds a visiting faculty position at the University of Johannesburg and Imperial College London. Marc's research interests center around data-efficient machine learning, probabilistic modeling and autonomous decision making. Marc was Program Chair of EWRL 2012, Workshops Chair of RSS 2013, EXPO-Co-Chair of ICML 2020, and Tutorials Co-Chair of NeurIPS 2021. In 2019, Marc co-organized the Machine Learning Summer School in London. He received Paper Awards at ICRA 2014, ICCAS 2016, and ICML 2020. He is co-author of the book [Mathematics for Machine Learning](https://mml-book.github.io) published by Cambridge University Press (2020).
Senanayak Sesh Kumar Karri (Imperial College London)
More from the Same Authors
-
2021 : Cross-Domain Imitation Learning via Optimal Transport »
Arnaud Fickinger · Samuel Cohen · Stuart Russell · Brandon Amos -
2021 : Imitation Learning from Pixel Observations for Continuous Control »
Samuel Cohen · Brandon Amos · Marc Deisenroth · Mikael Henaff · Eugene Vinitsky · Denis Yarats -
2021 : Input Convex Gradient Networks »
Jack Richter-Powell · Jonathan Lorraine · Brandon Amos -
2021 : Input Convex Gradient Networks »
Jack Richter-Powell · Jonathan Lorraine · Brandon Amos -
2021 : On Combining Expert Demonstrations in Imitation Learning via Optimal Transport »
ilana sebag · Samuel Cohen · Marc Deisenroth -
2022 : Actually Sparse Variational Gaussian Processes »
Jake Cunningham · So Takao · Mark van der Wilk · Marc Deisenroth -
2022 : Meta Optimal Transport »
Brandon Amos · Samuel Cohen · Giulia Luise · Ievgen Redko -
2022 : Short-term Prediction and Filtering of Solar Power Using State-Space Gaussian Processes »
So Takao · Sean Nassimiha · Peter Dudfield · Jack Kelly · Marc Deisenroth -
2022 : Optimal Transport for Offline Imitation Learning »
Yicheng Luo · zhengyao Jiang · Samuel Cohen · Edward Grefenstette · Marc Deisenroth -
2022 : Fair Synthetic Data Does not Necessarily Lead to Fair Models »
Yam Eitan · Nathan Cavaglione · Michael Arbel · Samuel Cohen -
2021 Poster: Scalable Online Planning via Reinforcement Learning Fine-Tuning »
Arnaud Fickinger · Hengyuan Hu · Brandon Amos · Stuart Russell · Noam Brown -
2021 Poster: Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels »
Michael Hutchinson · Alexander Terenin · Viacheslav Borovitskiy · So Takao · Yee Teh · Marc Deisenroth -
2020 Workshop: Interpretable Inductive Biases and Physically Structured Learning »
Michael Lutter · Alexander Terenin · Shirley Ho · Lei Wang -
2020 : Deep Riemannian Manifold Learning »
Aaron Lou · Maximilian Nickel · Brandon Amos -
2020 : GENNI: Visualising the Geometry of Equivalences for Neural Network Identifiability »
Arinbjörn Kolbeinsson · Nicholas Jennings · Marc Deisenroth · Daniel Lengyel · Janith Petangoda · Michalis Lazarou · Kate Highnam · John IF Falk -
2020 Poster: Matérn Gaussian Processes on Riemannian Manifolds »
Viacheslav Borovitskiy · Alexander Terenin · Peter Mostowsky · Marc Deisenroth -
2020 Session: Orals & Spotlights Track 25: Probabilistic Models/Statistics »
Marc Deisenroth · Matthew D. Hoffman -
2020 Poster: Probabilistic Active Meta-Learning »
Jean Kaddour · Steindor Saemundsson · Marc Deisenroth -
2020 Tutorial: (Track1) There and Back Again: A Tale of Slopes and Expectations Q&A »
Marc Deisenroth · Cheng Soon Ong -
2020 : Discussion Panel: Hugo Larochelle, Finale Doshi-Velez, Devi Parikh, Marc Deisenroth, Julien Mairal, Katja Hofmann, Phillip Isola, and Michael Bowling »
Hugo Larochelle · Finale Doshi-Velez · Marc Deisenroth · Devi Parikh · Julien Mairal · Katja Hofmann · Phillip Isola · Michael Bowling -
2020 Tutorial: (Track1) There and Back Again: A Tale of Slopes and Expectations »
Marc Deisenroth · Cheng Soon Ong -
2019 : Invited Talk - Marc Deisenroth »
Marc Deisenroth -
2019 Poster: Fast Decomposable Submodular Function Minimization using Constrained Total Variation »
Senanayak Sesh Kumar Karri · Francis Bach · Thomas Pock -
2018 Poster: Gaussian Process Conditional Density Estimation »
Vincent Dutordoir · Hugh Salimbeni · James Hensman · Marc Deisenroth -
2018 Poster: Differentiable MPC for End-to-end Planning and Control »
Brandon Amos · Ivan Jimenez · Jacob I Sacks · Byron Boots · J. Zico Kolter -
2018 Poster: Maximizing acquisition functions for Bayesian optimization »
James Wilson · Frank Hutter · Marc Deisenroth -
2018 Poster: Depth-Limited Solving for Imperfect-Information Games »
Noam Brown · Tuomas Sandholm · Brandon Amos -
2018 Poster: Orthogonally Decoupled Variational Gaussian Processes »
Hugh Salimbeni · Ching-An Cheng · Byron Boots · Marc Deisenroth -
2017 : Poster Session »
Shunsuke Horii · Heejin Jeong · Tobias Schwedes · Qing He · Ben Calderhead · Ertunc Erdil · Jaan Altosaar · Patrick Muchmore · Rajiv Khanna · Ian Gemp · Pengfei Zhang · Yuan Zhou · Chris Cremer · Maria DeYoreo · Alexander Terenin · Brendan McVeigh · Rachit Singh · Yaodong Yang · Erik Bodin · Trefor Evans · Henry Chai · Shandian Zhe · Jeffrey Ling · Vincent ADAM · Lars Maaløe · Andrew Miller · Ari Pakman · Josip Djolonga · Hong Ge -
2017 Poster: Doubly Stochastic Variational Inference for Deep Gaussian Processes »
Hugh Salimbeni · Marc Deisenroth -
2017 Spotlight: Doubly Stochastic Variational Inference for Deep Gaussian Processes »
Hugh Salimbeni · Marc Deisenroth -
2017 Poster: Identification of Gaussian Process State Space Models »
Stefanos Eleftheriadis · Tom Nicholson · Marc Deisenroth · James Hensman -
2017 Poster: Task-based End-to-end Model Learning in Stochastic Optimization »
Priya Donti · J. Zico Kolter · Brandon Amos -
2015 : Applications of Bayesian Optimization to Systems »
Marc Deisenroth -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2013 Workshop: Advances in Machine Learning for Sensorimotor Control »
Thomas Walsh · Alborz Geramifard · Marc Deisenroth · Jonathan How · Jan Peters -
2012 Poster: Expectation Propagation in Gaussian Process Dynamical Systems »
Marc Deisenroth · Shakir Mohamed -
2009 Workshop: Probabilistic Approaches for Control and Robotics »
Marc Deisenroth · Hilbert J Kappen · Emo Todorov · Duy Nguyen-Tuong · Carl Edward Rasmussen · Jan Peters