Timezone: »
The ability to understand and predict molecular responses towards external perturbations is a core question in molecular biology. Technological advancements in the recent past have enabled the generation of high-resolution single-cell data, making it possible to profile individual cells under different experimentally controlled perturbations. However, cells are typically destroyed during measurement, resulting in unpaired distributions over either perturbed or non-perturbed cells. Leveraging the theory of optimal transport and the recent advents of convex neural architectures, we learn a coupling describing the response of cell populations upon perturbation, enabling us to predict state trajectories on a single-cell level.We apply our approach, CellOT, to predict treatment responses of 21,650 cells subject to four different drug perturbations. CellOT outperforms current state-of-the-art methods both qualitatively and quantitatively, accurately capturing cellular behavior shifts across all different drugs.
Author Information
Charlotte Bunne (ETH Zurich)
Stefan Stark (Department of Computer Science, Swiss Federal Institute of Technology)
Gabriele Gut (University of Zurich)
Andreas Krause (ETH Zurich)
Gunnar Rätsch (ETH Zürich)
Lucas Pelkmans (University of Zurich)
Kjong Lehmann (Swiss Federal Institute of Technology)
More from the Same Authors
-
2021 : HiRID-ICU-Benchmark --- A Comprehensive Machine Learning Benchmark on High-resolution ICU Data »
Hugo Yèche · Rita Kuznetsova · Marc Zimmermann · Matthias Hüser · Xinrui Lyu · Martin Faltys · Gunnar Rätsch -
2021 Spotlight: DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 : Towards Safe Global Optimality in Robot Learning with GoSafe »
Bhavya Sukhija · Matteo Turchetta · Andreas Krause · Sebastian Trimpe · Dominik Baumann -
2021 : DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2022 : Active Bayesian Causal Inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 : Neural Unbalanced Optimal Transport via Cycle-Consistent Semi-Couplings »
Frederike Lübeck · Charlotte Bunne · Gabriele Gut · Jacobo Sarabia del Castillo · Lucas Pelkmans · David Alvarez-Melis -
2022 : Neural Unbalanced Optimal Transport via Cycle-Consistent Semi-Couplings »
Frederike Lübeck · Charlotte Bunne · Gabriele Gut · Jacobo Sarabia del Castillo · Lucas Pelkmans · David Alvarez-Melis -
2022 : Active Bayesian Causal inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 : Amortized Inference for Causal Structure Learning »
Lars Lorch · Scott Sussex · Jonas Rothfuss · Andreas Krause · Bernhard Schölkopf -
2022 : MARS: Meta-learning as score matching in the function space »
Kruno Lehman · Jonas Rothfuss · Andreas Krause -
2022 : Neural All-Pairs Shortest Path for Reinforcement Learning »
Cristina Pinneri · Georg Martius · Andreas Krause -
2023 Poster: Optimistic Active Exploration of Dynamical Systems »
Bhavya · Lenart Treven · Cansu Sancaktar · Sebastian Blaes · Stelian Coros · Andreas Krause -
2023 Poster: Riemannian stochastic optimization methods avoid strict saddle points »
Ya-Ping Hsieh · Mohammad Reza Karimi Jaghargh · Andreas Krause · Panayotis Mertikopoulos -
2023 Poster: Learning To Dive In Branch And Bound »
Max Paulus · Andreas Krause -
2023 Poster: Implicit Manifold Gaussian Process Regression »
Bernardo Fichera · Viacheslav Borovitskiy · Andreas Krause · Aude G Billard -
2023 Poster: A Dynamical System View of Langevin-Based Non-Convex Sampling »
Mohammad Reza Karimi Jaghargh · Ya-Ping Hsieh · Andreas Krause -
2023 Poster: Anytime Model Selection in Linear Bandits »
Parnian Kassraie · Aldo Pacchiano · Nicolas Emmenegger · Andreas Krause -
2023 Poster: Stochastic Approximation Algorithms for Systems of Interacting Particles »
Mohammad Reza Karimi Jaghargh · Ya-Ping Hsieh · Andreas Krause -
2023 Poster: Efficient Exploration in Continuous-time Model-based Reinforcement Learning »
Lenart Treven · Jonas Hübotter · Bhavya · Florian Dorfler · Andreas Krause -
2023 Poster: Contextual Stochastic Bilevel Optimization »
Yifan Hu · Jie Wang · Yao Xie · Andreas Krause · Daniel Kuhn -
2023 Poster: Multitask Learning with No Regret: from Improved Confidence Bounds to Active Learning »
Pier Giuseppe Sessa · Pierre Laforgue · Nicolò Cesa-Bianchi · Andreas Krause -
2023 Poster: Likelihood Ratio Confidence Sets for Sequential Decision Making »
Nicolas Emmenegger · Mojmir Mutny · Andreas Krause -
2023 Workshop: Adaptive Experimental Design and Active Learning in the Real World »
Willie Neiswanger · Mojmir Mutny · Ilija Bogunovic · Ava Soleimany · Zi Wang · Stefano Ermon · Andreas Krause -
2023 Workshop: Optimal Transport and Machine Learning »
Anna Korba · Aram-Alexandre Pooladian · Charlotte Bunne · David Alvarez-Melis · Marco Cuturi · Ziv Goldfeld -
2023 Workshop: NeurIPS 2023 Workshop on Diffusion Models »
Bahjat Kawar · Valentin De Bortoli · Charlotte Bunne · James Thornton · Jiaming Song · Jong Chul Ye · Chenlin Meng -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Active Bayesian Causal Inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 : On the Importance of Clinical Notes in Multi-modal Learning for EHR Data »
Severin Husmann · Hugo Yèche · Gunnar Rätsch · Rita Kuznetsova -
2022 Workshop: Learning from Time Series for Health »
Sana Tonekaboni · Thomas Hartvigsen · Satya Narayan Shukla · Gunnar Rätsch · Marzyeh Ghassemi · Anna Goldenberg -
2022 Poster: Supervised Training of Conditional Monge Maps »
Charlotte Bunne · Andreas Krause · Marco Cuturi -
2022 Poster: Near-Optimal Multi-Agent Learning for Safe Coverage Control »
Manish Prajapat · Matteo Turchetta · Melanie Zeilinger · Andreas Krause -
2022 Poster: Amortized Inference for Causal Structure Learning »
Lars Lorch · Scott Sussex · Jonas Rothfuss · Andreas Krause · Bernhard Schölkopf -
2022 Poster: Movement Penalized Bayesian Optimization with Application to Wind Energy Systems »
Shyam Sundhar Ramesh · Pier Giuseppe Sessa · Andreas Krause · Ilija Bogunovic -
2022 Poster: Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces »
Mojmir Mutny · Andreas Krause -
2022 Poster: Graph Neural Network Bandits »
Parnian Kassraie · Andreas Krause · Ilija Bogunovic -
2022 Poster: Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations »
Alexander Immer · Tycho van der Ouderaa · Gunnar Rätsch · Vincent Fortuin · Mark van der Wilk -
2022 Poster: Active Bayesian Causal Inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 Poster: A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian Process Bandits »
Ilija Bogunovic · Zihan Li · Andreas Krause · Jonathan Scarlett -
2022 Poster: Active Exploration for Inverse Reinforcement Learning »
David Lindner · Andreas Krause · Giorgia Ramponi -
2022 Poster: Learning Long-Term Crop Management Strategies with CyclesGym »
Matteo Turchetta · Luca Corinzia · Scott Sussex · Amanda Burton · Juan Herrera · Ioannis Athanasiadis · Joachim M Buhmann · Andreas Krause -
2021 Workshop: Optimal Transport and Machine Learning »
Jason Altschuler · Charlotte Bunne · Laetitia Chapel · Marco Cuturi · Rémi Flamary · Gabriel Peyré · Alexandra Suvorikova -
2021 : Meta-Learning Reliable Priors in the Function Space »
Jonas Rothfuss · Dominique Heyn · jinfan Chen · Andreas Krause -
2021 Poster: Learning Graph Models for Retrosynthesis Prediction »
Vignesh Ram Somnath · Charlotte Bunne · Connor Coley · Andreas Krause · Regina Barzilay -
2021 Poster: Risk-averse Heteroscedastic Bayesian Optimization »
Anastasia Makarova · Ilnura Usmanova · Ilija Bogunovic · Andreas Krause -
2021 Poster: Hierarchical Skills for Efficient Exploration »
Jonas Gehring · Gabriel Synnaeve · Andreas Krause · Nicolas Usunier -
2021 Poster: Multi-Scale Representation Learning on Proteins »
Vignesh Ram Somnath · Charlotte Bunne · Andreas Krause -
2021 Poster: Learning Stable Deep Dynamics Models for Partially Observed or Delayed Dynamical Systems »
Andreas Schlaginhaufen · Philippe Wenk · Andreas Krause · Florian Dorfler -
2021 Poster: Information Directed Reward Learning for Reinforcement Learning »
David Lindner · Matteo Turchetta · Sebastian Tschiatschek · Kamil Ciosek · Andreas Krause -
2021 Poster: Robust Generalization despite Distribution Shift via Minimum Discriminating Information »
Tobias Sutter · Andreas Krause · Daniel Kuhn -
2021 Poster: Near-Optimal Multi-Perturbation Experimental Design for Causal Structure Learning »
Scott Sussex · Caroline Uhler · Andreas Krause -
2021 Poster: Distributional Gradient Matching for Learning Uncertain Neural Dynamics Models »
Lenart Treven · Philippe Wenk · Florian Dorfler · Andreas Krause -
2021 Poster: Meta-Learning Reliable Priors in the Function Space »
Jonas Rothfuss · Dominique Heyn · jinfan Chen · Andreas Krause -
2021 Poster: Misspecified Gaussian Process Bandit Optimization »
Ilija Bogunovic · Andreas Krause -
2021 Poster: DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 Poster: Regret Bounds for Gaussian-Process Optimization in Large Domains »
Manuel Wuethrich · Bernhard Schölkopf · Andreas Krause -
2020 : Invited speaker: Adaptive Sampling for Stochastic Risk-Averse Learning, Andreas Krause »
Andreas Krause -
2020 Poster: Adaptive Sampling for Stochastic Risk-Averse Learning »
Sebastian Curi · Kfir Y. Levy · Stefanie Jegelka · Andreas Krause -
2020 Poster: Contextual Games: Multi-Agent Learning with Side Information »
Pier Giuseppe Sessa · Ilija Bogunovic · Andreas Krause · Maryam Kamgarpour -
2020 Poster: Coresets via Bilevel Optimization for Continual Learning and Streaming »
Zalan Borsos · Mojmir Mutny · Andreas Krause -
2020 Poster: Gradient Estimation with Stochastic Softmax Tricks »
Max Paulus · Dami Choi · Danny Tarlow · Andreas Krause · Chris Maddison -
2020 Oral: Gradient Estimation with Stochastic Softmax Tricks »
Max Paulus · Dami Choi · Danny Tarlow · Andreas Krause · Chris Maddison -
2020 Poster: Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning »
Sebastian Curi · Felix Berkenkamp · Andreas Krause -
2020 Poster: Learning to Play Sequential Games versus Unknown Opponents »
Pier Giuseppe Sessa · Ilija Bogunovic · Maryam Kamgarpour · Andreas Krause -
2020 Spotlight: Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning »
Sebastian Curi · Felix Berkenkamp · Andreas Krause -
2020 Poster: Safe Reinforcement Learning via Curriculum Induction »
Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal -
2020 Spotlight: Safe Reinforcement Learning via Curriculum Induction »
Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Poster: Efficiently Learning Fourier Sparse Set Functions »
Andisheh Amrollahi · Amir Zandieh · Michael Kapralov · Andreas Krause -
2019 Spotlight: Efficiently Learning Fourier Sparse Set Functions »
Andisheh Amrollahi · Amir Zandieh · Michael Kapralov · Andreas Krause -
2019 Poster: Stochastic Bandits with Context Distributions »
Johannes Kirschner · Andreas Krause -
2019 Poster: A Domain Agnostic Measure for Monitoring and Evaluating GANs »
Paulina Grnarova · Kfir Y. Levy · Aurelien Lucchi · Nathanael Perraudin · Ian Goodfellow · Thomas Hofmann · Andreas Krause -
2019 Poster: No-Regret Learning in Unknown Games with Correlated Payoffs »
Pier Giuseppe Sessa · Ilija Bogunovic · Maryam Kamgarpour · Andreas Krause -
2019 Poster: Teaching Multiple Concepts to a Forgetful Learner »
Anette Hunziker · Yuxin Chen · Oisin Mac Aodha · Manuel Gomez Rodriguez · Andreas Krause · Pietro Perona · Yisong Yue · Adish Singla -
2019 Poster: Adaptive Sequence Submodularity »
Marko Mitrovic · Ehsan Kazemi · Moran Feldman · Andreas Krause · Amin Karbasi -
2019 Poster: Safe Exploration for Interactive Machine Learning »
Matteo Turchetta · Felix Berkenkamp · Andreas Krause -
2018 Poster: Provable Variational Inference for Constrained Log-Submodular Models »
Josip Djolonga · Stefanie Jegelka · Andreas Krause -
2018 Poster: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2018 Spotlight: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2018 Poster: Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features »
Mojmir Mutny · Andreas Krause -
2018 Spotlight: Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features »
Mojmir Mutny · Andreas Krause -
2018 Poster: Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making »
Hoda Heidari · Claudio Ferrari · Krishna Gummadi · Andreas Krause -
2017 : Invited talk: Towards Safe Bayesian Optimization »
Andreas Krause -
2017 Workshop: Discrete Structures in Machine Learning »
Yaron Singer · Jeff A Bilmes · Andreas Krause · Stefanie Jegelka · Amin Karbasi -
2017 Poster: Interactive Submodular Bandit »
Lin Chen · Andreas Krause · Amin Karbasi -
2017 Poster: Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees »
Francesco Locatello · Michael Tschannen · Gunnar Ratsch · Martin Jaggi -
2017 Poster: Safe Model-based Reinforcement Learning with Stability Guarantees »
Felix Berkenkamp · Matteo Turchetta · Angela Schoellig · Andreas Krause -
2017 Poster: Differentiable Learning of Submodular Functions »
Josip Djolonga · Andreas Krause -
2017 Spotlight: Differentiable Learning of Submodular Functions »
Josip Djolonga · Andreas Krause -
2017 Poster: Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms »
Yatao Bian · Kfir Levy · Andreas Krause · Joachim M Buhmann -
2017 Poster: Stochastic Submodular Maximization: The Case of Coverage Functions »
Mohammad Karimi · Mario Lucic · Hamed Hassani · Andreas Krause -
2016 Poster: Variational Inference in Mixed Probabilistic Submodular Models »
Josip Djolonga · Sebastian Tschiatschek · Andreas Krause -
2016 Poster: Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation »
Ilija Bogunovic · Jonathan Scarlett · Andreas Krause · Volkan Cevher -
2016 Poster: Cooperative Graphical Models »
Josip Djolonga · Stefanie Jegelka · Sebastian Tschiatschek · Andreas Krause -
2016 Poster: Fast and Provably Good Seedings for k-Means »
Olivier Bachem · Mario Lucic · Hamed Hassani · Andreas Krause -
2016 Oral: Fast and Provably Good Seedings for k-Means »
Olivier Bachem · Mario Lucic · Hamed Hassani · Andreas Krause -
2016 Poster: Safe Exploration in Finite Markov Decision Processes with Gaussian Processes »
Matteo Turchetta · Felix Berkenkamp · Andreas Krause -
2015 : Safe Exploration for Bayesian Optimization »
Andreas Krause -
2015 Poster: Distributed Submodular Cover: Succinctly Summarizing Massive Data »
Baharan Mirzasoleiman · Amin Karbasi · Ashwinkumar Badanidiyuru · Andreas Krause -
2015 Poster: Sampling from Probabilistic Submodular Models »
Alkis Gotovos · Hamed Hassani · Andreas Krause -
2015 Spotlight: Distributed Submodular Cover: Succinctly Summarizing Massive Data »
Baharan Mirzasoleiman · Amin Karbasi · Ashwinkumar Badanidiyuru · Andreas Krause -
2015 Oral: Sampling from Probabilistic Submodular Models »
Alkis Gotovos · Hamed Hassani · Andreas Krause -
2014 Workshop: NIPS’14 Workshop on Crowdsourcing and Machine Learning »
David Parkes · Denny Zhou · Chien-Ju Ho · Nihar Bhadresh Shah · Adish Singla · Jared Heyman · Edwin Simpson · Andreas Krause · Rafael Frongillo · Jennifer Wortman Vaughan · Panagiotis Papadimitriou · Damien Peters -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Workshop: Machine Learning for Clinical Data Analysis, Healthcare and Genomics »
Gunnar Rätsch · Madalina Fiterau · Julia Vogt -
2014 Poster: Efficient Sampling for Learning Sparse Additive Models in High Dimensions »
Hemant Tyagi · Bernd Gärtner · Andreas Krause -
2014 Poster: From MAP to Marginals: Variational Inference in Bayesian Submodular Models »
Josip Djolonga · Andreas Krause -
2014 Poster: Efficient Partial Monitoring with Prior Information »
Hastagiri P Vanchinathan · Gábor Bartók · Andreas Krause -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2013 Workshop: Bayesian Optimization in Theory and Practice »
Matthew Hoffman · Jasper Snoek · Nando de Freitas · Michael A Osborne · Ryan Adams · Sebastien Bubeck · Philipp Hennig · Remi Munos · Andreas Krause -
2013 Workshop: Discrete Optimization in Machine Learning: Connecting Theory and Practice »
Stefanie Jegelka · Andreas Krause · Pradeep Ravikumar · Kazuo Murota · Jeffrey A Bilmes · Yisong Yue · Michael Jordan -
2013 Poster: High-Dimensional Gaussian Process Bandits »
Josip Djolonga · Andreas Krause · Volkan Cevher -
2013 Poster: Distributed Submodular Maximization: Identifying Representative Elements in Massive Data »
Baharan Mirzasoleiman · Amin Karbasi · Rik Sarkar · Andreas Krause -
2012 Workshop: Discrete Optimization in Machine Learning (DISCML): Structure and Scalability »
Stefanie Jegelka · Andreas Krause · Jeffrey A Bilmes · Pradeep Ravikumar -
2012 Session: Oral Session 4 »
Gunnar Rätsch -
2011 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Gunnar Rätsch · Yanjun Qi · Tomer Hertz · Anna Goldenberg · Christina Leslie -
2011 Workshop: Discrete Optimization in Machine Learning (DISCML): Uncertainty, Generalization and Feedback »
Andreas Krause · Pradeep Ravikumar · Stefanie S Jegelka · Jeffrey A Bilmes -
2011 Oral: Scalable Training of Mixture Models via Coresets »
Dan Feldman · Matthew Faulkner · Andreas Krause -
2011 Poster: Scalable Training of Mixture Models via Coresets »
Dan Feldman · Matthew Faulkner · Andreas Krause -
2011 Poster: Contextual Gaussian Process Bandit Optimization »
Andreas Krause · Cheng Soon Ong -
2011 Poster: Crowdclustering »
Ryan G Gomes · Peter Welinder · Andreas Krause · Pietro Perona -
2011 Poster: Hierarchical Multitask Structured Output Learning for Large-scale Sequence Segmentation »
Nico Goernitz · Christian Widmer · Georg Zeller · Andre Kahles · Soeren Sonnenburg · Gunnar Rätsch -
2010 Workshop: Discrete Optimization in Machine Learning: Structures, Algorithms and Applications »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes · Stefanie Jegelka -
2010 Workshop: Machine Learning in Computational Biology »
Gunnar Rätsch · Jean-Philippe Vert · Tomer Hertz · Yanjun Qi -
2010 Spotlight: Efficient Minimization of Decomposable Submodular Functions »
Peter G Stobbe · Andreas Krause -
2010 Poster: Discriminative Clustering by Regularized Information Maximization »
Ryan G Gomes · Andreas Krause · Pietro Perona -
2010 Poster: Efficient Minimization of Decomposable Submodular Functions »
Peter G Stobbe · Andreas Krause -
2010 Poster: Near-Optimal Bayesian Active Learning with Noisy Observations »
Daniel Golovin · Andreas Krause · Debajyoti Ray -
2009 Workshop: Discrete Optimization in Machine Learning: Submodularity, Polyhedra and Sparsity »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes -
2009 Poster: Online Learning of Assignments »
Matthew Streeter · Daniel Golovin · Andreas Krause -
2009 Spotlight: Online Learning of Assignments »
Matthew Streeter · Daniel Golovin · Andreas Krause -
2008 Workshop: Machine Learning in Computational Biology »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch -
2008 Mini Symposium: Machine Learning in Computational Biology »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch -
2008 Poster: An empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis »
Gabriele B Schweikert · Christian Widmer · Bernhard Schölkopf · Gunnar Rätsch -
2007 Workshop: Machine Learning in Computational Biology (Part 2) »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch · Koji Tsuda -
2007 Workshop: Machine Learning in Computational Biology (Part 1) »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch · Koji Tsuda -
2007 Spotlight: Selecting Observations against Adversarial Objectives »
Andreas Krause · H. Brendan McMahan · Carlos Guestrin · Anupam Gupta -
2007 Spotlight: Boosting Algorithms for Maximizing the Soft Margin »
Manfred K. Warmuth · Karen Glocer · Gunnar Rätsch -
2007 Poster: Boosting Algorithms for Maximizing the Soft Margin »
Manfred K. Warmuth · Karen Glocer · Gunnar Rätsch -
2007 Poster: Selecting Observations against Adversarial Objectives »
Andreas Krause · H. Brendan McMahan · Carlos Guestrin · Anupam Gupta -
2006 Workshop: New Problems and Methods in Computational Biology »
Gal Chechik · Quaid Morris · Koji Tsuda · Gunnar Rätsch · Christina Leslie · William S Noble -
2006 Poster: Large Scale Hidden Semi-Markov SVMs »
Gunnar Rätsch · Soeren Sonnenburg -
2006 Demonstration: SHOGUN Machine Learning Toolbox »
Soeren Sonnenburg · Gunnar Rätsch