Timezone: »

 
Learning Neural Causal Models with Active Interventions
Nino Scherrer · Olexa Bilaniuk · Yashas Annadani · Anirudh Goyal · Patrick Schwab · Bernhard Schölkopf · Michael Mozer · Yoshua Bengio · Stefan Bauer · Nan Rosemary Ke

Discovering causal structures from data is a challenging inference problem of fundamental importance in all areas of science. The appealing scaling properties of neural networks have recently led to a surge of interest in differentiable neural network-based methods for learning causal structures from data. So far differentiable causal discovery has focused on static datasets of observational or interventional origin. In this work, we introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process. Our method significantly reduces the required number of interactions compared with random intervention targeting and is applicable for both discrete and continuous optimization formulations of learning the underlying directed acyclic graph (DAG) from data. We examine the proposed method across a wide range of settings and demonstrate superior performance on multiple benchmarks from simulated to real-world data.

Author Information

Nino Scherrer (ETH Zurich)
Olexa Bilaniuk (University of Montreal)
Yashas Annadani (ETH Zurich)
Anirudh Goyal (Université de Montréal)
Patrick Schwab (ETH Zurich / Roche)
Bernhard Schölkopf (MPI for Intelligent Systems, Tübingen)

Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.

Michael Mozer (Google Research / University of Colorado)
Yoshua Bengio (Mila / U. Montreal)

Yoshua Bengio is Full Professor in the computer science and operations research department at U. Montreal, scientific director and founder of Mila and of IVADO, Turing Award 2018 recipient, Canada Research Chair in Statistical Learning Algorithms, as well as a Canada AI CIFAR Chair. He pioneered deep learning and has been getting the most citations per day in 2018 among all computer scientists, worldwide. He is an officer of the Order of Canada, member of the Royal Society of Canada, was awarded the Killam Prize, the Marie-Victorin Prize and the Radio-Canada Scientist of the year in 2017, and he is a member of the NeurIPS advisory board and co-founder of the ICLR conference, as well as program director of the CIFAR program on Learning in Machines and Brains. His goal is to contribute to uncover the principles giving rise to intelligence through learning, as well as favour the development of AI for the benefit of all.

Stefan Bauer (Max Planck institute)
Nan Rosemary Ke (DeepMind)

More from the Same Authors