Timezone: »
Tensor network (TN) methods have proven their considerable potential in determin-istic regression and classification related paradigms, but remain underexplored in probabilistic settings. To this end, we introduce a variational inference TN frame-work for supervised learning, referred to as the Bayesian Tensor Network (BTN).This is achieved by making use of the multi-linear nature of tensor networks to con-struct a structured variational model which scales linearly with data dimensionality.The so imposed low rank structure on the tensor mean and Kronecker separability on the local covariances, make it possible to efficiently induce weight dependencies in the posterior distribution, thus enhancing model expressiveness at a drastically lower parameter complexity compared to the standard mean-field approach. A comprehensive validation of the proposed approach indicates the competitiveness of BTNs against modern structured Bayesian neural network approaches, while exhibiting enhanced interpretability and efficiency
Author Information
Kriton Konstantinidis (Imperial College London)
Yao Lei Xu (Imperial College London)
Qibin Zhao (RIKEN AIP)
Danilo Mandic (Imperial College London)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : Bayesian Tensor Networks »
Tue. Dec 14th 08:00 -- 08:05 PM Room
More from the Same Authors
-
2021 : A Tensorized Spectral Attention Mechanism for Efficient Natural Language Processing »
Yao Lei Xu · Kriton Konstantinidis · Shengxi Li · Danilo Mandic -
2021 : Bayesian Latent Factor Model for Higher-order Data: an Extended Abstract »
Zerui Tao · Xuyang ZHAO · Toshihisa Tanaka · Qibin Zhao -
2021 : Is Rank Minimization of the Essence to Learn Tensor Network Structure? »
Chao Li · Qibin Zhao -
2021 : Fully-Connected Tensor Network Decomposition »
Yu-Bang Zheng · Ting-Zhu Huang · Xi-Le Zhao · Qibin Zhao · Tai-Xiang Jiang -
2023 Poster: Transformed Low-Rank Parameterization Can Help Robust Generalization for Tensor Neural Networks »
Andong Wang · Chao Li · Mingyuan Bai · Zhong Jin · Guoxu Zhou · Qibin Zhao -
2023 Poster: Undirected Probabilistic Model for Tensor Decomposition »
Zerui Tao · Toshihisa Tanaka · Qibin Zhao -
2022 Spotlight: Lightning Talks 4B-4 »
Ziyue Jiang · Zeeshan Khan · Yuxiang Yang · Chenze Shao · Yichong Leng · Zehao Yu · Wenguan Wang · Xian Liu · Zehua Chen · Yang Feng · Qianyi Wu · James Liang · C.V. Jawahar · Junjie Yang · Zhe Su · Songyou Peng · Yufei Xu · Junliang Guo · Michael Niemeyer · Hang Zhou · Zhou Zhao · Makarand Tapaswi · Dongfang Liu · Qian Yang · Torsten Sattler · Yuanqi Du · Haohe Liu · Jing Zhang · Andreas Geiger · Yi Ren · Long Lan · Jiawei Chen · Wayne Wu · Dahua Lin · Dacheng Tao · Xu Tan · Jinglin Liu · Ziwei Liu · 振辉 叶 · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Spotlight: BinauralGrad: A Two-Stage Conditional Diffusion Probabilistic Model for Binaural Audio Synthesis »
Yichong Leng · Zehua Chen · Junliang Guo · Haohe Liu · Jiawei Chen · Xu Tan · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Poster: SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG »
Reinmar Kobler · Jun-ichiro Hirayama · Qibin Zhao · Motoaki Kawanabe -
2022 Poster: BinauralGrad: A Two-Stage Conditional Diffusion Probabilistic Model for Binaural Audio Synthesis »
Yichong Leng · Zehua Chen · Junliang Guo · Haohe Liu · Jiawei Chen · Xu Tan · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2021 : Discussion Pannel »
Xiao-Yang Liu · Qibin Zhao · Chao Li · Guillaume Rabusseau -
2021 : A Tensorized Spectral Attention Mechanism for Efficient Natural Language Processing »
Yao Lei Xu · Kriton Konstantinidis · Shengxi Li · Danilo Mandic -
2021 : Danilo P. Mandic »
Danilo Mandic -
2021 : Multi-graph Tensor Networks: Big Data Analytics on Irregular Domains »
Danilo Mandic -
2021 Workshop: Second Workshop on Quantum Tensor Networks in Machine Learning »
Xiao-Yang Liu · Qibin Zhao · Ivan Oseledets · Yufei Ding · Guillaume Rabusseau · Jean Kossaifi · Khadijeh Najafi · Anwar Walid · Andrzej Cichocki · Masashi Sugiyama -
2020 : Poster 1: Multi-Graph Tensor Networks by Yao Lei Xu »
Yao Lei Xu -
2020 Workshop: First Workshop on Quantum Tensor Networks in Machine Learning »
Xiao-Yang Liu · Qibin Zhao · Jacob Biamonte · Cesar F Caiafa · Paul Pu Liang · Nadav Cohen · Stefan Leichenauer -
2020 Poster: Reciprocal Adversarial Learning via Characteristic Functions »
Shengxi Li · Zeyang Yu · Min Xiang · Danilo Mandic -
2020 Spotlight: Reciprocal Adversarial Learning via Characteristic Functions »
Shengxi Li · Zeyang Yu · Min Xiang · Danilo Mandic -
2019 Poster: Deep Multimodal Multilinear Fusion with High-order Polynomial Pooling »
Ming Hou · Jiajia Tang · Jianhai Zhang · Wanzeng Kong · Qibin Zhao -
2011 Poster: A Multilinear Subspace Regression Method Using Orthogonal Tensors Decompositions »
Qibin Zhao · Cesar F Caiafa · Danilo Mandic · Liqing Zhang · Tonio Ball · Andreas Schulze-bonhage · Andrzej S CICHOCKI -
2011 Spotlight: A Multilinear Subspace Regression Method Using Orthogonal Tensors Decompositions »
Qibin Zhao · Cesar F Caiafa · Danilo Mandic · Liqing Zhang · Tonio Ball · Andreas Schulze-bonhage · Andrzej S CICHOCKI