Timezone: »
While some convolutional neural networks (CNNs) have surpassed human visual abilities in object classification, they often struggle to recognize objects in images corrupted with different types of common noise patterns, highlighting a major limitation of this family of models. Recently, it has been shown that simulating a primary visual cortex (V1) at the front of CNNs leads to small improvements in robustness to these image perturbations. In this study, we start with the observation that different variants of the V1 model show gains for specific corruption types. We then build a new model using an ensembling technique, which combines multiple individual models with different V1 front-end variants. The model ensemble leverages the strengths of each individual model, leading to significant improvements in robustness across all corruption categories and outperforming the base model by 38\% on average. Finally, we show that using distillation, it is possible to partially compress the knowledge in the ensemble model into a single model with a V1 front-end. While the ensembling and distillation techniques used here are hardly biologically-plausible, the results presented here demonstrate that by combining the specific strengths of different neuronal circuits in V1 it is possible to improve the robustness of CNNs for a wide range of perturbations.
Author Information
Avinash Baidya (University of California Davis)
Joel Dapello (Harvard University)
James J DiCarlo (Massachusetts Institute of Technology)
Prof. DiCarlo received his Ph.D. in biomedical engineering and his M.D. from Johns Hopkins in 1998, and did his postdoctoral training in primate visual neurophysiology at Baylor College of Medicine. He joined the MIT faculty in 2002. He is a Sloan Fellow, a Pew Scholar, and a McKnight Scholar. His lab’s research goal is a computational understanding of the brain mechanisms that underlie object recognition. They use large-scale neurophysiology, brain imaging, optogenetic methods, and high-throughput computational simulations to understand how the primate ventral visual stream is able to untangle object identity from other latent image variables such as object position, scale, and pose. They have shown that populations of neurons at the highest cortical visual processing stage (IT) rapidly convey explicit representations of object identity, and that this ability is reshaped by natural visual experience. They have also shown how visual recognition tests can be used to discover new, high-performing bio-inspired algorithms. This understanding may inspire new machine vision systems, new neural prosthetics, and a foundation for understanding how high-level visual representation is altered in conditions such as agnosia, autism and dyslexia.
Tiago Marques (MIT)
More from the Same Authors
-
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2022 : Measuring the Alignment of ANNs and Primate V1 on Luminance and Contrast Response Characteristics »
Stephanie Olaiya · Tiago Marques · James J DiCarlo -
2022 : Implementing Divisive Normalization in CNNs Improves Robustness to Common Image Corruptions »
Andrew Cirincione · Reginald Verrier · Artiom Bic · Stephanie Olaiya · James J DiCarlo · Lawrence Udeigwe · Tiago Marques -
2022 : Primate Inferotemporal Cortex Neurons Generalize Better to Novel Image Distributions Than Analogous Deep Neural Networks Units »
Marliawaty I Gusti Bagus · Tiago Marques · Sachi Sanghavi · James J DiCarlo · Martin Schrimpf -
2022 : A report on recent experimental tests of two predictions of contemporary computable models of the biological deep neural network underling primate visual intelligence »
James J DiCarlo -
2022 Poster: The Missing Invariance Principle found -- the Reciprocal Twin of Invariant Risk Minimization »
Dongsung Huh · Avinash Baidya -
2022 Poster: How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning? »
Chengxu Zhuang · Ziyu Xiang · Yoon Bai · Xiaoxuan Jia · Nicholas Turk-Browne · Kenneth Norman · James J DiCarlo · Dan Yamins -
2021 Poster: Neural Population Geometry Reveals the Role of Stochasticity in Robust Perception »
Joel Dapello · Jenelle Feather · Hang Le · Tiago Marques · David Cox · Josh McDermott · James J DiCarlo · Sueyeon Chung -
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2020 Poster: Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations »
Joel Dapello · Tiago Marques · Martin Schrimpf · Franziska Geiger · David Cox · James J DiCarlo -
2020 Spotlight: Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations »
Joel Dapello · Tiago Marques · Martin Schrimpf · Franziska Geiger · David Cox · James J DiCarlo -
2019 Poster: Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs »
Jonas Kubilius · Martin Schrimpf · Kohitij Kar · Rishi Rajalingham · Ha Hong · Najib Majaj · Elias Issa · Pouya Bashivan · Jonathan Prescott-Roy · Kailyn Schmidt · Aran Nayebi · Daniel Bear · Daniel Yamins · James J DiCarlo -
2019 Oral: Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs »
Jonas Kubilius · Martin Schrimpf · Ha Hong · Najib Majaj · Rishi Rajalingham · Elias Issa · Kohitij Kar · Pouya Bashivan · Jonathan Prescott-Roy · Kailyn Schmidt · Aran Nayebi · Daniel Bear · Daniel Yamins · James J DiCarlo -
2018 Poster: Task-Driven Convolutional Recurrent Models of the Visual System »
Aran Nayebi · Daniel Bear · Jonas Kubilius · Kohitij Kar · Surya Ganguli · David Sussillo · James J DiCarlo · Daniel Yamins -
2017 : Panel on "What neural systems can teach us about building better machine learning systems" »
Timothy Lillicrap · James J DiCarlo · Christopher Rozell · Viren Jain · Nathan Kutz · William Gray Roncal · Bingni Brunton -
2017 : Can brain data be used to reverse engineer the algorithms of human perception? »
James J DiCarlo -
2013 Poster: Hierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream »
Daniel L Yamins · Ha Hong · Charles Cadieu · James J DiCarlo -
2013 Tutorial: Mechanisms Underlying Visual Object Recognition: Humans vs. Neurons vs. Machines »
James J DiCarlo