`

Timezone: »

 
Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs
Avinash Baidya · Joel Dapello · James J DiCarlo · Tiago Marques

Mon Dec 13 09:00 AM -- 10:00 AM (PST) @ None
Event URL: https://openreview.net/forum?id=i2D1ba2_Yd6 »

While some convolutional neural networks (CNNs) have surpassed human visual abilities in object classification, they often struggle to recognize objects in images corrupted with different types of common noise patterns, highlighting a major limitation of this family of models. Recently, it has been shown that simulating a primary visual cortex (V1) at the front of CNNs leads to small improvements in robustness to these image perturbations. In this study, we start with the observation that different variants of the V1 model show gains for specific corruption types. We then build a new model using an ensembling technique, which combines multiple individual models with different V1 front-end variants. The model ensemble leverages the strengths of each individual model, leading to significant improvements in robustness across all corruption categories and outperforming the base model by 38\% on average. Finally, we show that using distillation, it is possible to partially compress the knowledge in the ensemble model into a single model with a V1 front-end. While the ensembling and distillation techniques used here are hardly biologically-plausible, the results presented here demonstrate that by combining the specific strengths of different neuronal circuits in V1 it is possible to improve the robustness of CNNs for a wide range of perturbations.

Author Information

Avinash Baidya (University of California Davis)
Joel Dapello (Harvard University)
James J DiCarlo (Massachusetts Institute of Technology)

Prof. DiCarlo received his Ph.D. in biomedical engineering and his M.D. from Johns Hopkins in 1998, and did his postdoctoral training in primate visual neurophysiology at Baylor College of Medicine. He joined the MIT faculty in 2002. He is a Sloan Fellow, a Pew Scholar, and a McKnight Scholar. His lab’s research goal is a computational understanding of the brain mechanisms that underlie object recognition. They use large-scale neurophysiology, brain imaging, optogenetic methods, and high-throughput computational simulations to understand how the primate ventral visual stream is able to untangle object identity from other latent image variables such as object position, scale, and pose. They have shown that populations of neurons at the highest cortical visual processing stage (IT) rapidly convey explicit representations of object identity, and that this ability is reshaped by natural visual experience. They have also shown how visual recognition tests can be used to discover new, high-performing bio-inspired algorithms. This understanding may inspire new machine vision systems, new neural prosthetics, and a foundation for understanding how high-level visual representation is altered in conditions such as agnosia, autism and dyslexia.

Tiago Marques (MIT)

More from the Same Authors