Timezone: »
Discrete-continuous hybrid action space is a natural setting in many practical problems, such as robot control and game AI. However, most previous Reinforcement Learning (RL) works only demonstrate the success in controlling with either discrete or continuous action space, while seldom take into account the hybrid action space. One naive way to address hybrid action RL is to convert the hybrid action space into a unified homogeneous action space by discretization or continualization, so that conventional RL algorithms can be applied. However, this ignores the underlying structure of hybrid action space and also induces the scalability issue and additional approximation difficulties, thus leading to degenerated results. In this paper, we propose Hybrid Action Representation (HyAR) to learn a compact and decodable latent representation space for the original hybrid action space. HyAR constructs the latent space and embeds the dependence between discrete action and continuous parameter via an embedding table and conditional Variantional Auto-Encoder (VAE). To further improve the effectiveness, the action representation is trained to be semantically smooth through unsupervised environmental dynamics prediction. Finally, the agent then learns its policy with conventional DRL algorithms in the learned representation space and interacts with the environment by decoding the hybrid action embeddings to the original action space. We evaluate HyAR in a variety of environments with discrete-continuous action space. The results demonstrate the superiority of HyAR when compared with previous baselines, especially for high-dimensional action spaces.
Author Information
Boyan Li (University of tianjin of china)
Hongyao Tang (Tianjin University)
YAN ZHENG (Tianjin University)
Jianye Hao (Tianjin University)
Pengyi Li (Tianjin University)
Zhaopeng Meng (School of Computer Software, Tianjin University)
LI Wang
More from the Same Authors
-
2021 : OVD-Explorer: A General Information-theoretic Exploration Approach for Reinforcement Learning »
Jinyi Liu · Zhi Wang · YAN ZHENG · Jianye Hao · Junjie Ye · Chenjia Bai · Pengyi Li -
2021 : HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation »
Boyan Li · Hongyao Tang · YAN ZHENG · Jianye Hao · Pengyi Li · Zhaopeng Meng · LI Wang -
2021 : PMIC: Improving Multi-Agent Reinforcement Learning with Progressive Mutual Information Collaboration »
Pengyi Li · Hongyao Tang · Tianpei Yang · Xiaotian Hao · Sang Tong · YAN ZHENG · Jianye Hao · Matthew Taylor · Jinyi Liu -
2022 : Towards A Unified Policy Abstraction Theory and Representation Learning Approach in Markov Decision Processes »
Min Zhang · Hongyao Tang · Jianye Hao · YAN ZHENG -
2022 : EUCLID: Towards Efficient Unsupervised Reinforcement Learning with Multi-choice Dynamics Model »
Yifu Yuan · Jianye Hao · Fei Ni · Yao Mu · YAN ZHENG · Yujing Hu · Jinyi Liu · Yingfeng Chen · Changjie Fan -
2022 : ERL-Re$^2$: Efficient Evolutionary Reinforcement Learning with Shared State Representation and Individual Policy Representation »
Pengyi Li · Hongyao Tang · Jianye Hao · YAN ZHENG · Xian Fu · Zhaopeng Meng -
2022 Spotlight: Lightning Talks 5A-3 »
Minting Pan · Xiang Chen · Wenhan Huang · Can Chang · Zhecheng Yuan · Jianzhun Shao · Yushi Cao · Peihao Chen · Ke Xue · Zhengrong Xue · Zhiqiang Lou · Xiangming Zhu · Lei Li · Zhiming Li · Kai Li · Jiacheng Xu · Dongyu Ji · Ni Mu · Kun Shao · Tianpei Yang · Kunyang Lin · Ningyu Zhang · Yunbo Wang · Lei Yuan · Bo Yuan · Hongchang Zhang · Jiajun Wu · Tianze Zhou · Xueqian Wang · Ling Pan · Yuhang Jiang · Xiaokang Yang · Xiaozhuan Liang · Hao Zhang · Weiwen Hu · Miqing Li · YAN ZHENG · Matthew Taylor · Huazhe Xu · Shumin Deng · Chao Qian · YI WU · Shuncheng He · Wenbing Huang · Chuanqi Tan · Zongzhang Zhang · Yang Gao · Jun Luo · Yi Li · Xiangyang Ji · Thomas Li · Mingkui Tan · Fei Huang · Yang Yu · Huazhe Xu · Dongge Wang · Jianye Hao · Chuang Gan · Yang Liu · Luo Si · Hangyu Mao · Huajun Chen · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: GALOIS: Boosting Deep Reinforcement Learning via Generalizable Logic Synthesis »
Yushi Cao · Zhiming Li · Tianpei Yang · Hao Zhang · YAN ZHENG · Yi Li · Jianye Hao · Yang Liu -
2022 Poster: GALOIS: Boosting Deep Reinforcement Learning via Generalizable Logic Synthesis »
Yushi Cao · Zhiming Li · Tianpei Yang · Hao Zhang · YAN ZHENG · Yi Li · Jianye Hao · Yang Liu -
2021 : HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation »
Boyan Li · Hongyao Tang · YAN ZHENG · Jianye Hao · Pengyi Li · Zhaopeng Meng · LI Wang -
2021 Poster: Model-Based Reinforcement Learning via Imagination with Derived Memory »
Yao Mu · Yuzheng Zhuang · Bin Wang · Guangxiang Zhu · Wulong Liu · Jianyu Chen · Ping Luo · Shengbo Li · Chongjie Zhang · Jianye Hao -
2021 Poster: Adaptive Online Packing-guided Search for POMDPs »
Chenyang Wu · Guoyu Yang · Zongzhang Zhang · Yang Yu · Dong Li · Wulong Liu · Jianye Hao -
2021 Poster: A Hierarchical Reinforcement Learning Based Optimization Framework for Large-scale Dynamic Pickup and Delivery Problems »
Yi Ma · Xiaotian Hao · Jianye Hao · Jiawen Lu · Xing Liu · Tong Xialiang · Mingxuan Yuan · Zhigang Li · Jie Tang · Zhaopeng Meng -
2021 Poster: Flattening Sharpness for Dynamic Gradient Projection Memory Benefits Continual Learning »
Danruo DENG · Guangyong Chen · Jianye Hao · Qiong Wang · Pheng-Ann Heng -
2021 Poster: An Efficient Transfer Learning Framework for Multiagent Reinforcement Learning »
Tianpei Yang · Weixun Wang · Hongyao Tang · Jianye Hao · Zhaopeng Meng · Hangyu Mao · Dong Li · Wulong Liu · Yingfeng Chen · Yujing Hu · Changjie Fan · Chengwei Zhang -
2021 Poster: Dynamic Bottleneck for Robust Self-Supervised Exploration »
Chenjia Bai · Lingxiao Wang · Lei Han · Animesh Garg · Jianye Hao · Peng Liu · Zhaoran Wang -
2018 Poster: A Deep Bayesian Policy Reuse Approach Against Non-Stationary Agents »
YAN ZHENG · Zhaopeng Meng · Jianye Hao · Zongzhang Zhang · Tianpei Yang · Changjie Fan