Timezone: »
Visual imitation learning is an effective approach for intelligent agents to obtain control policies from visual demonstration sequences. However, standard visual imitation learning assumes expert demonstration that only contains the task-relevant frames. While previous works propose to learn from \textit{noisy} demonstration, it still remains challenging when there are locally consistent yet task irrelevant subsequences in the demonstration. We term this kind of imitation learning imitation-learning-with-extraneousness'' and introduce Extraneousness-Aware Imitation Learning (EIL), a self-supervised approach that learns visuomotor policies from third-person demonstrations where extraneous subsequences exist. EIL learns action-conditioned self-supervised frame embeddings and aligns task-relevant frames across videos while excluding the extraneous parts. Our method allows agents to learn from extraneousness-rich demonstrations by intelligently ignoring irrelevant components. Experimental results show that EIL significantly outperforms strong baselines and approaches the level of training from the perfect demonstration on various simulated continuous control tasks and a
learning-from-slides'' task.
Author Information
Ray Zheng (Tsinghua University)
Kaizhe Hu (Tsinghua University)
Boyuan Chen (UC Berkeley)
Huazhe Xu (UC Berkeley)
More from the Same Authors
-
2021 : Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers »
Ruihan Yang · Minghao Zhang · Nicklas Hansen · Huazhe Xu · Xiaolong Wang -
2021 : Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers »
Ruihan Yang · Minghao Zhang · Nicklas Hansen · Huazhe Xu · Xiaolong Wang -
2021 Poster: Multi-Person 3D Motion Prediction with Multi-Range Transformers »
Jiashun Wang · Huazhe Xu · Medhini Narasimhan · Xiaolong Wang -
2021 Poster: NovelD: A Simple yet Effective Exploration Criterion »
Tianjun Zhang · Huazhe Xu · Xiaolong Wang · Yi Wu · Kurt Keutzer · Joseph Gonzalez · Yuandong Tian -
2020 Poster: Multi-Task Reinforcement Learning with Soft Modularization »
Ruihan Yang · Huazhe Xu · YI WU · Xiaolong Wang -
2018 : Coffee Break 1 (Posters) »
Ananya Kumar · Siyu Huang · Huazhe Xu · Michael Janner · Parth Chadha · Nils Thuerey · Peter Lu · Maria Bauza · Anthony Tompkins · Guanya Shi · Thomas Baumeister · André Ofner · Zhi-Qi Cheng · Yuping Luo · Deepika Bablani · Jeroen Vanbaar · Kartic Subr · Tatiana López-Guevara · Devesh Jha · Fabian Fuchs · Stefano Rosa · Alison Pouplin · Alex Ray · Qi Liu · Eric Crawford