Timezone: »
Retrospectives on the Deployment of a Flood Segmentation Deep Learning Model Into a Near-Real-Time Monitoring Service
Edoardo Nemni
Mon Dec 13 09:10 AM -- 09:40 AM (PST) @
Author Information
Edoardo Nemni (United Nations Satellite Centre (UNOSAT))
Edoardo Nemni is a Machine Learning Researcher at the United Nations Institute of Training and Research Operational Satellite Application Programme (UNITAR-UNOSAT). His research focus lies on apply deep learning algorithms to satellite imagery for disaster response such as satellite-derived flood analysis, shelter mapping, building footprints, damage assessment, and more. His current project is FloodAI: an end-to-end fully automated pipeline whereby satellite images of flood-prone areas are automatically downloaded and processed to output disaster maps.
More from the Same Authors
-
2022 : Deep Learning for Rapid Landslide Detection using Synthetic Aperture Radar (SAR) Datacubes »
Vanessa Boehm · Wei Ji Leong · Ragini Bal Mahesh · Ioannis Prapas · Siddha Ganju · Freddie Kalaitzis · Edoardo Nemni · Raul Ramos-Pollán -
2022 : SAR-based landslide classification pretraining leads to better segmentation »
Ragini Bal Mahesh · Ioannis Prapas · Wei Ji Leong · Vanessa Boehm · Edoardo Nemni · Freddie Kalaitzis · Siddha Ganju · Raul Ramos-Pollán -
2022 : Conditional Progressive Generative Adversarial Network for satellite image generation »
Renato Cardoso · SOFIA VALLECORSA · Edoardo Nemni -
2020 Workshop: Second Workshop on AI for Humanitarian Assistance and Disaster Response »
Ritwik Gupta · Robin Murphy · Eric Heim · Zhangyang Wang · Bryce Goodman · Nirav Patel · Piotr Bilinski · Edoardo Nemni