Timezone: »
Deep reinforcement learning (RL) agents trained on a few environments, often struggle to generalize on unseen environments, even when such environments are semantically equivalent to training environments. Such agents learn representations that overfit the characteristics of the training environments. We posit that generalization can be improved by assigning similar representations to scenarios with similar sequences of long-term optimal behavior. To do so, we propose behavior predictive representations (BPR) that capture long-term optimal behavior. BPR trains an agent to predict latent state representations multiple steps into the future such that these representations can predict the optimal behavior at the future steps. We demonstrate that BPR provides large gains on a jumping task from pixels, a problem designed to test generalization.
Author Information
Siddhant Agarwal (Indian Institute of Technology Kharagpur)
Aaron Courville (U. Montreal)
Rishabh Agarwal (Google Research, Brain Team)
My research work mainly revolves around deep reinforcement learning (RL), often with the goal of making RL methods suitable for real-world problems, and includes an outstanding paper award at NeurIPS.
More from the Same Authors
-
2021 Spotlight: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 Spotlight: A Variational Perspective on Diffusion-Based Generative Models and Score Matching »
Chin-Wei Huang · Jae Hyun Lim · Aaron Courville -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : Behavior Predictive Representations for Generalization in Reinforcement Learning »
Siddhant Agarwal · Aaron Courville · Rishabh Agarwal -
2021 : MIDI-DDSP: Hierarchical Modeling of Music for Detailed Control »
Yusong Wu · Ethan Manilow · Kyle Kastner · Tim Cooijmans · Aaron Courville · Cheng-Zhi Anna Huang · Jesse Engel -
2022 : A Novel Stochastic Gradient Descent Algorithm for LearningPrincipal Subspaces »
Charline Le Lan · Joshua Greaves · Jesse Farebrother · Mark Rowland · Fabian Pedregosa · Rishabh Agarwal · Marc Bellemare -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Revisiting Bellman Errors for Offline Model Selection »
Joshua Zitovsky · Rishabh Agarwal · Daniel de Marchi · Michael Kosorok -
2022 : Datasets That Are Not: Evolving Novelty Through Sparsity and Iterated Learning »
Yusong Wu · Kyle Kastner · Tim Cooijmans · Cheng-Zhi Anna Huang · Aaron Courville -
2022 : Revisiting Bellman Errors for Offline Model Selection »
Joshua Zitovsky · Daniel de Marchi · Rishabh Agarwal · Michael Kosorok -
2022 : Unleashing The Potential of Data Sharing in Ensemble Deep Reinforcement Learning »
Zhixuan Lin · Pierluca D'Oro · Evgenii Nikishin · Aaron Courville -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier »
Pierluca D'Oro · Max Schwarzer · Evgenii Nikishin · Pierre-Luc Bacon · Marc Bellemare · Aaron Courville -
2022 : Investigating Multi-task Pretraining and Generalization in Reinforcement Learning »
Adrien Ali Taiga · Rishabh Agarwal · Jesse Farebrother · Aaron Courville · Marc Bellemare -
2023 Poster: Let the Flows Tell: Solving Graph Combinatorial Problems with GFlowNets »
Dinghuai Zhang · Hanjun Dai · Nikolay Malkin · Aaron Courville · Yoshua Bengio · Ling Pan -
2023 Poster: Versatile Energy-Based Probabilistic Models for High Energy Physics »
Taoli Cheng · Aaron Courville -
2023 Poster: Improving Systematic Generalization using Iterated Learning and Simplicial Embeddings »
Yi Ren · Samuel Lavoie · Michael Galkin · Danica J. Sutherland · Aaron Courville -
2023 Poster: Double Gumbel Q-Learning »
David Yu-Tung Hui · Aaron Courville · Pierre-Luc Bacon -
2023 Poster: f-Policy Gradients: A General Framework for Goal-Conditioned RL using f-Divergences »
Siddhant Agarwal · Ishan Durugkar · Peter Stone · Amy Zhang -
2023 Poster: Language Model Alignment with Elastic Reset »
Michael Noukhovitch · Samuel Lavoie · Florian Strub · Aaron Courville -
2023 Poster: Group Robust Classification Without Any Group Information »
Christos Tsirigotis · Joao Monteiro · Pau Rodriguez · David Vazquez · Aaron Courville -
2023 Poster: DriveMax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous Driving Research »
Cole Gulino · Justin Fu · Wenjie Luo · George Tucker · Eli Bronstein · Yiren Lu · Jean Harb · Xinlei Pan · Yan Wang · Xiangyu Chen · John Co-Reyes · Rishabh Agarwal · Rebecca Roelofs · Yao Lu · Nico Montali · Paul Mougin · Zoey Yang · Brandyn White · Aleksandra Faust · Rowan McAllister · Dragomir Anguelov · Benjamin Sapp -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 : Democratizing RL Research by Reusing Prior Computation »
Rishabh Agarwal -
2022 Workshop: 3rd Offline Reinforcement Learning Workshop: Offline RL as a "Launchpad" »
Aviral Kumar · Rishabh Agarwal · Aravind Rajeswaran · Wenxuan Zhou · George Tucker · Doina Precup · Aviral Kumar -
2022 Poster: Riemannian Diffusion Models »
Chin-Wei Huang · Milad Aghajohari · Joey Bose · Prakash Panangaden · Aaron Courville -
2022 Poster: Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 : Retrospective Panel »
Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal -
2021 : Speaker Intro »
Rishabh Agarwal · Aviral Kumar -
2021 : Speaker Intro »
Rishabh Agarwal · Aviral Kumar -
2021 Workshop: Offline Reinforcement Learning »
Rishabh Agarwal · Aviral Kumar · George Tucker · Justin Fu · Nan Jiang · Doina Precup · Aviral Kumar -
2021 : Opening Remarks »
Rishabh Agarwal · Aviral Kumar -
2021 : [O3] Reinforcement Explanation Learning »
Siddhant Agarwal · OWAIS IQBAL · Sree Aditya Buridi · Madda Manjusha · Abir Das -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 Poster: Gradient Starvation: A Learning Proclivity in Neural Networks »
Mohammad Pezeshki · Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie -
2021 Poster: Pretraining Representations for Data-Efficient Reinforcement Learning »
Max Schwarzer · Nitarshan Rajkumar · Michael Noukhovitch · Ankesh Anand · Laurent Charlin · R Devon Hjelm · Philip Bachman · Aaron Courville -
2021 Poster: A Variational Perspective on Diffusion-Based Generative Models and Score Matching »
Chin-Wei Huang · Jae Hyun Lim · Aaron Courville -
2021 Oral: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 Poster: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 Poster: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2020 : Contributed Talk #3: Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning »
Rishabh Agarwal · Marlos C. Machado · Pablo Samuel Castro · Marc Bellemare -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 Workshop: Offline Reinforcement Learning »
Aviral Kumar · Rishabh Agarwal · George Tucker · Lihong Li · Doina Precup · Aviral Kumar -
2020 : Introduction »
Aviral Kumar · George Tucker · Rishabh Agarwal -
2020 Workshop: AI for Earth Sciences »
Surya Karthik Mukkavilli · Johanna Hansen · Natasha Dudek · Tom Beucler · Kelly Kochanski · Mayur Mudigonda · Karthik Kashinath · Amy McGovern · Paul D Miller · Chad Frischmann · Pierre Gentine · Gregory Dudek · Aaron Courville · Daniel Kammen · Vipin Kumar -
2020 Poster: Unsupervised Learning of Dense Visual Representations »
Pedro O. Pinheiro · Amjad Almahairi · Ryan Benmalek · Florian Golemo · Aaron Courville -
2020 Poster: RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning »
Caglar Gulcehre · Ziyu Wang · Alexander Novikov · Thomas Paine · Sergio Gómez · Konrad Zolna · Rishabh Agarwal · Josh Merel · Daniel Mankowitz · Cosmin Paduraru · Gabriel Dulac-Arnold · Jerry Li · Mohammad Norouzi · Matthew Hoffman · Nicolas Heess · Nando de Freitas -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 : Contributed Talks »
Rishabh Agarwal · Adam Gleave · Kimin Lee -
2019 : Poster Session »
Ahana Ghosh · Javad Shafiee · Akhilan Boopathy · Alex Tamkin · Theodoros Vasiloudis · Vedant Nanda · Ali Baheri · Paul Fieguth · Andrew Bennett · Guanya Shi · Hao Liu · Arushi Jain · Jacob Tyo · Benjie Wang · Boxiao Chen · Carroll Wainwright · Chandramouli Shama Sastry · Chao Tang · Daniel S. Brown · David Inouye · David Venuto · Dhruv Ramani · Dimitrios Diochnos · Divyam Madaan · Dmitrii Krashenikov · Joel Oren · Doyup Lee · Eleanor Quint · elmira amirloo · Matteo Pirotta · Gavin Hartnett · Geoffroy Dubourg-Felonneau · Gokul Swamy · Pin-Yu Chen · Ilija Bogunovic · Jason Carter · Javier Garcia-Barcos · Jeet Mohapatra · Jesse Zhang · Jian Qian · John Martin · Oliver Richter · Federico Zaiter · Tsui-Wei Weng · Karthik Abinav Sankararaman · Kyriakos Polymenakos · Lan Hoang · mahdieh abbasi · Marco Gallieri · Mathieu Seurin · Matteo Papini · Matteo Turchetta · Matthew Sotoudeh · Mehrdad Hosseinzadeh · Nathan Fulton · Masatoshi Uehara · Niranjani Prasad · Oana-Maria Camburu · Patrik Kolaric · Philipp Renz · Prateek Jaiswal · Reazul Hasan Russel · Riashat Islam · Rishabh Agarwal · Alexander Aldrick · Sachin Vernekar · Sahin Lale · Sai Kiran Narayanaswami · Samuel Daulton · Sanjam Garg · Sebastian East · Shun Zhang · Soheil Dsidbari · Justin Goodwin · Victoria Krakovna · Wenhao Luo · Wesley Chung · Yuanyuan Shi · Yuh-Shyang Wang · Hongwei Jin · Ziping Xu -
2019 Poster: Ordered Memory »
Yikang Shen · Shawn Tan · Arian Hosseini · Zhouhan Lin · Alessandro Sordoni · Aaron Courville -
2019 Poster: MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis »
Kundan Kumar · Rithesh Kumar · Thibault de Boissiere · Lucas Gestin · Wei Zhen Teoh · Jose Sotelo · Alexandre de Brébisson · Yoshua Bengio · Aaron Courville -
2019 Poster: No-Press Diplomacy: Modeling Multi-Agent Gameplay »
Philip Paquette · Yuchen Lu · SETON STEVEN BOCCO · Max Smith · Satya O.-G. · Jonathan K. Kummerfeld · Joelle Pineau · Satinder Singh · Aaron Courville -
2018 Workshop: Visually grounded interaction and language »
Florian Strub · Harm de Vries · Erik Wijmans · Samyak Datta · Ethan Perez · Mateusz Malinowski · Stefan Lee · Peter Anderson · Aaron Courville · Jeremie MARY · Dhruv Batra · Devi Parikh · Olivier Pietquin · Chiori HORI · Tim Marks · Anoop Cherian -
2018 Poster: Improving Explorability in Variational Inference with Annealed Variational Objectives »
Chin-Wei Huang · Shawn Tan · Alexandre Lacoste · Aaron Courville -
2018 Poster: Towards Text Generation with Adversarially Learned Neural Outlines »
Sandeep Subramanian · Sai Rajeswar Mudumba · Alessandro Sordoni · Adam Trischler · Aaron Courville · Chris Pal -
2017 Workshop: Visually grounded interaction and language »
Florian Strub · Harm de Vries · Abhishek Das · Satwik Kottur · Stefan Lee · Mateusz Malinowski · Olivier Pietquin · Devi Parikh · Dhruv Batra · Aaron Courville · Jeremie Mary -
2017 Poster: Improved Training of Wasserstein GANs »
Ishaan Gulrajani · Faruk Ahmed · Martin Arjovsky · Vincent Dumoulin · Aaron Courville -
2017 Poster: GibbsNet: Iterative Adversarial Inference for Deep Graphical Models »
Alex Lamb · R Devon Hjelm · Yaroslav Ganin · Joseph Paul Cohen · Aaron Courville · Yoshua Bengio -
2017 Poster: Modulating early visual processing by language »
Harm de Vries · Florian Strub · Jeremie Mary · Hugo Larochelle · Olivier Pietquin · Aaron Courville -
2017 Spotlight: Modulating early visual processing by language »
Harm de Vries · Florian Strub · Jeremie Mary · Hugo Larochelle · Olivier Pietquin · Aaron Courville -
2016 : Discussion panel »
Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton -
2016 : Adversarially Learned Inference (ALI) and BiGANs »
Aaron Courville -
2016 Poster: Professor Forcing: A New Algorithm for Training Recurrent Networks »
Alex M Lamb · Anirudh Goyal · Ying Zhang · Saizheng Zhang · Aaron Courville · Yoshua Bengio -
2015 : Introduction »
Aaron Courville -
2015 Workshop: Multimodal Machine Learning »
Louis-Philippe Morency · Tadas Baltrusaitis · Aaron Courville · Kyunghyun Cho -
2015 Poster: A Recurrent Latent Variable Model for Sequential Data »
Junyoung Chung · Kyle Kastner · Laurent Dinh · Kratarth Goel · Aaron Courville · Yoshua Bengio -
2014 Poster: Generative Adversarial Nets »
Ian Goodfellow · Jean Pouget-Abadie · Mehdi Mirza · Bing Xu · David Warde-Farley · Sherjil Ozair · Aaron Courville · Yoshua Bengio -
2013 Poster: Multi-Prediction Deep Boltzmann Machines »
Ian Goodfellow · Mehdi Mirza · Aaron Courville · Yoshua Bengio -
2011 Poster: On Tracking The Partition Function »
Guillaume Desjardins · Aaron Courville · Yoshua Bengio -
2009 Poster: An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism »
Aaron Courville · Douglas Eck · Yoshua Bengio -
2009 Session: Oral Session 3: Deep Learning and Network Models »
Aaron Courville -
2008 Session: Oral session 11: Attention and Mind »
Aaron Courville -
2007 Spotlight: The rat as particle filter »
Nathaniel D Daw · Aaron Courville -
2007 Poster: The rat as particle filter »
Nathaniel D Daw · Aaron Courville