Timezone: »
The particle-flow (PF) algorithm is used in general-purpose particle detectors to reconstruct a comprehensive particle-level view of the collision by combining information from different subdetectors. A graph neural network model, known as the MLPF algorithm, has been developed to substitute rule-based PF. However, understanding the model's decision making is not straightforward, especially given the complexity of the set-to-set prediction task, dynamic graph building, and message-passing steps. In this paper, we adapt the layerwise-relevance propagation technique to the MLPF algorithm to gauge the relevant nodes and features for its predictions. Through this we gain insight into the model's decision-making.
Author Information
Farouk Mokhtar (UC San Diego)
Raghav Kansal (UC San Diego)
Daniel Diaz (University of California San Diego)
Javier Duarte (UC San Diego)
I am an Assistant Professor in experimental high energy physics at UC San Diego and a member of the CMS collaboration at CERN. My research interests include measuring the properties and couplings of the Higgs boson and searching for beyond-the-standard-model particles in LHC data. I am interested in developing machine learning algorithms, real-time trigger systems (with applications to embedded devices), and heterogenous computing architectures for the next generation of high energy physics experiments.
Maurizio Pierini (CERN)
jean-roch vlimant (California Institute of Technology)
More from the Same Authors
-
2021 : An Imperfect machine to search for New Physics: systematic uncertainties in a machine-learning based signal extraction »
Gaia Grosso · Maurizio Pierini -
2021 : Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance »
Steven Tsan · Sukanya Krishna · Raghav Kansal · Anthony Aportela · Farouk Mokhtar · Daniel Diaz · Javier Duarte · Maurizio Pierini · jean-roch vlimant -
2022 : Do graph neural networks learn jet substructure? »
Farouk Mokhtar · Raghav Kansal · Javier Duarte -
2022 : How good is the Standard Model? Machine learning multivariate Goodness of Fit tests »
Gaia Grosso · Marco Letizia · Andrea Wulzer · Maurizio Pierini -
2021 Poster: Particle Cloud Generation with Message Passing Generative Adversarial Networks »
Raghav Kansal · Javier Duarte · Hao Su · Breno Orzari · Thiago Tomei · Maurizio Pierini · Mary Touranakou · jean-roch vlimant · Dimitrios Gunopulos -
2019 : Afternoon Coffee Break & Poster Session »
Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun -
2019 : Conclusion on TrackML, a Particle Physics Tracking Machine Learning Challenge Combining Accuracy and Inference Speed »
David Rousseau · jean-roch vlimant -
2018 : TrackML, a Particle Physics Tracking Machine Learning Challenge, Jean-Roch Vlimant (Caltech), Vincenzo Innocente, Andreas Salzburger (CERN), Isabelle Guyon (ChaLearn), Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University),David Rousseau∗, Yet »
Andrey Ustyuzhanin · jean-roch vlimant -
2018 : TrackML Analyzing some top solutions »
jean-roch vlimant