Timezone: »
Simulations of high-energy particle collisions, such as those used at the Large Hadron Collider, are based on quantum field theory; however, many approximations are made in practice. For example, the simulation of the parton shower, which gives rise to objects called `jets', is based on a semi-classical approximation that neglects various interference effects. While there is a desire to incorporate interference effects, new computational techniques are needed to cope with the exponential growth in complexity associated to quantum processes. We present a classical algorithm called the quantum trellis to efficiently compute the un-normalized probability density over N-body phase space including all interference effects, and we pair this with an MCMC-based sampling strategy. This provides a potential path forward for classical computers and a strong baseline for approaches based on quantum computing.
Author Information
Sebastian Macaluso (New York University)
Kyle Cranmer (New York University & Meta AI)
Kyle Cranmer is an Associate Professor of Physics at New York University and affiliated with NYU's Center for Data Science. He is an experimental particle physicists working, primarily, on the Large Hadron Collider, based in Geneva, Switzerland. He was awarded the Presidential Early Career Award for Science and Engineering in 2007 and the National Science Foundation's Career Award in 2009. Professor Cranmer developed a framework that enables collaborative statistical modeling, which was used extensively for the discovery of the Higgs boson in July, 2012. His current interests are at the intersection of physics and machine learning and include inference in the context of intractable likelihoods, development of machine learning models imbued with physics knowledge, adversarial training for robustness to systematic uncertainty, the use of generative models in the physical sciences, and integration of reproducible workflows in the inference pipeline.
More from the Same Authors
-
2021 : Characterizing γ-ray maps of the Galactic Center with neural density estimation »
Siddharth Mishra-Sharma · Kyle Cranmer -
2022 : Computing the Bayes-optimal classifier and exact maximum likelihood estimator with a semi-realistic generative model for jet physics »
Kyle Cranmer · Matthew Drnevich · Lauren Greenspan · Sebastian Macaluso · Duccio Pappadopulo -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2021 : Kyle Cranmer »
Kyle Cranmer -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais -
2020 Poster: Flows for simultaneous manifold learning and density estimation »
Johann Brehmer · Kyle Cranmer -
2020 Poster: Discovering Symbolic Models from Deep Learning with Inductive Biases »
Miles Cranmer · Alvaro Sanchez Gonzalez · Peter Battaglia · Rui Xu · Kyle Cranmer · David Spergel · Shirley Ho -
2020 Poster: Set2Graph: Learning Graphs From Sets »
Hadar Serviansky · Nimrod Segol · Jonathan Shlomi · Kyle Cranmer · Eilam Gross · Haggai Maron · Yaron Lipman -
2019 : Opening Remarks »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Poster: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model »
Atilim Gunes Baydin · Lei Shao · Wahid Bhimji · Lukas Heinrich · Saeid Naderiparizi · Andreas Munk · Jialin Liu · Bradley Gram-Hansen · Gilles Louppe · Lawrence Meadows · Philip Torr · Victor Lee · Kyle Cranmer · Mr. Prabhat · Frank Wood -
2017 : Panel session »
Iain Murray · Max Welling · Juan Carrasquilla · Anatole von Lilienfeld · Gilles Louppe · Kyle Cranmer -
2017 Workshop: Deep Learning for Physical Sciences »
Atilim Gunes Baydin · Mr. Prabhat · Kyle Cranmer · Frank Wood -
2017 Poster: Learning to Pivot with Adversarial Networks »
Gilles Louppe · Michael Kagan · Kyle Cranmer -
2016 Invited Talk: Machine Learning and Likelihood-Free Inference in Particle Physics »
Kyle Cranmer -
2015 : An alternative to ABC for likelihood-free inference »
Kyle Cranmer