Timezone: »
Autoencoders have useful applications in high energy physics in both compression and anomaly detection, particularly for jets: collimated showers of particles produced in collisions such as those at the CERN Large Hadron Collider. We explore the use of graph-based autoencoders, which operate on jets in their "particle cloud" representations and can leverage the interdependencies among the particles within jets, for such tasks. Additionally, we develop a differentiable approximation to the energy mover's distance via a graph neural network, which may subsequently be used as a reconstruction loss function for autoencoders.
Author Information
Steven Tsan (University of California, San Diego)
Sukanya Krishna (UCSD)
Raghav Kansal (UC San Diego)
Anthony Aportela (UCSD Physics)
Farouk Mokhtar (UC San Diego)
Daniel Diaz (University of California San Diego)
Javier Duarte (UC San Diego)
I am an Assistant Professor in experimental high energy physics at UC San Diego and a member of the CMS collaboration at CERN. My research interests include measuring the properties and couplings of the Higgs boson and searching for beyond-the-standard-model particles in LHC data. I am interested in developing machine learning algorithms, real-time trigger systems (with applications to embedded devices), and heterogenous computing architectures for the next generation of high energy physics experiments.
Maurizio Pierini (CERN)
jean-roch vlimant (California Institute of Technology)
More from the Same Authors
-
2021 : An Imperfect machine to search for New Physics: systematic uncertainties in a machine-learning based signal extraction »
Gaia Grosso · Maurizio Pierini -
2021 : Explaining machine-learned particle-flow reconstruction »
Farouk Mokhtar · Raghav Kansal · Daniel Diaz · Javier Duarte · Maurizio Pierini · jean-roch vlimant -
2022 : Do graph neural networks learn jet substructure? »
Farouk Mokhtar · Raghav Kansal · Javier Duarte -
2022 : How good is the Standard Model? Machine learning multivariate Goodness of Fit tests »
Gaia Grosso · Marco Letizia · Andrea Wulzer · Maurizio Pierini -
2021 Poster: Particle Cloud Generation with Message Passing Generative Adversarial Networks »
Raghav Kansal · Javier Duarte · Hao Su · Breno Orzari · Thiago Tomei · Maurizio Pierini · Mary Touranakou · jean-roch vlimant · Dimitrios Gunopulos -
2019 : Afternoon Coffee Break & Poster Session »
Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun -
2019 : Conclusion on TrackML, a Particle Physics Tracking Machine Learning Challenge Combining Accuracy and Inference Speed »
David Rousseau · jean-roch vlimant -
2018 : TrackML, a Particle Physics Tracking Machine Learning Challenge, Jean-Roch Vlimant (Caltech), Vincenzo Innocente, Andreas Salzburger (CERN), Isabelle Guyon (ChaLearn), Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University),David Rousseau∗, Yet »
Andrey Ustyuzhanin · jean-roch vlimant -
2018 : TrackML Analyzing some top solutions »
jean-roch vlimant