Timezone: »
An Imperfect machine to search for New Physics: systematic uncertainties in a machine-learning based signal extraction
Gaia Grosso · Maurizio Pierini
We show how to deal with uncertainties on the Reference Model predictions in a signal-model-independent new physics search strategy based on artificial neural networks. Our approach builds directly on the Maximum Likelihood ratio treatment of uncertainties as nuisance parameters for hypothesis testing that is routinely employed in high-energy physics. After presenting the conceptual foundations of the method, we show its applicability in a multivariate setup by studying the impact of two typical sources of experimental uncertainties in two-body final states at the LHC.
Author Information
Gaia Grosso (CERN)
Maurizio Pierini (CERN)
More from the Same Authors
-
2021 : Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance »
Steven Tsan · Sukanya Krishna · Raghav Kansal · Anthony Aportela · Farouk Mokhtar · Daniel Diaz · Javier Duarte · Maurizio Pierini · jean-roch vlimant -
2021 : Explaining machine-learned particle-flow reconstruction »
Farouk Mokhtar · Raghav Kansal · Daniel Diaz · Javier Duarte · Maurizio Pierini · jean-roch vlimant -
2022 : How good is the Standard Model? Machine learning multivariate Goodness of Fit tests »
Gaia Grosso · Marco Letizia · Andrea Wulzer · Maurizio Pierini -
2022 : A fast and flexible machine learning approach to data quality monitoring »
Marco Letizia · Gaia Grosso · Andrea Wulzer · Marco Zanetti · Jacopo Pazzini · Marco Rando · Nicolò Lai -
2021 Poster: Particle Cloud Generation with Message Passing Generative Adversarial Networks »
Raghav Kansal · Javier Duarte · Hao Su · Breno Orzari · Thiago Tomei · Maurizio Pierini · Mary Touranakou · jean-roch vlimant · Dimitrios Gunopulos