Timezone: »
Developing fast and accurate surrogates for physics-based coastal and ocean models is an urgent need due to the coastal flood risk under accelerating sea level rise, and the computational expense of deterministic numerical models. For this purpose, we develop the first digital twin of Earth coastlines with new physics-informed machine learning techniques extending the state-of-art Neural Operator. As a proof-of-concept study, we built Fourier Neural Operator (FNO) surrogates on the simulations of an industry-standard flood and ocean model (NEMO). The resulting FNO surrogate accurately predicts the sea surface height in most regions while achieving upwards of 45x acceleration of NEMO. We delivered an open-source CoastalTwin platform in an end-to-end and modular way, to enable easy extensions to other simulations and ML-based surrogate methods. Our results and deliverable provide a promising approach to massively accelerate coastal dynamics simulators, which can enable scientists to efficiently execute many simulations for decision-making, uncertainty quantification, and other research activities.
Author Information
Peishi Jiang (Pacific Northwest National Laboratory)
Constantin Weisser (Massachusetts Institute of Technology)
Björn Lütjens (Massachusetts Institute of Technology)
Dava Newman (MIT)
More from the Same Authors
-
2021 : WiSoSuper: Benchmarking Super-Resolution Methods on Wind and Solar Data »
Rupa Kurinchi-Vendhan · Björn Lütjens · Lucien Werner · Steven Low -
2021 : Toward Foundation Models for Earth Monitoring: Proposal for a Climate Change Benchmark »
Alexandre Lacoste · Evan Sherwin · Hannah Kerner · Hamed Alemohammad · Björn Lütjens · Jeremy Irvin · David Dao · Alex Chang · Mehmet Gunturkun · Alexandre Drouin · Pau Rodriguez · David Vazquez -
2022 : ForestBench: Equitable Benchmarks for Monitoring, Reporting, and Verification of Nature-Based Solutions with Machine Learning »
Lucas Czech · Björn Lütjens · David Dao -
2021 : Spectral PINNs: Fast Uncertainty Propagation with Physics-Informed Neural Networks »
Björn Lütjens · Mark Veillette · Dava Newman -
2020 : Climate Change and ML for Policy »
Angel Hsu · Dava Newman · James Rattling Leaf, Sr. · Mouhamadou M Cisse -
2019 : Lunch + Poster Session »
Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans