Timezone: »
Studies of kilonovae, optical counterparts of binary neutron star mergers, rely on accurate simulation models. The most accurate simulations are computationally expensive; surrogate modelling provides a route to emulate the original simulations and therefore use them for statistical inference. We present a new implementation of surrogate construction using conditional variational autoencoders (cVAE) and discuss the challenges of this method. We additionally present model evaluation methods tailored to the scientific analyses of this field. We find that the cVAE surrogate produces errors well within a standard assumed systematic modelling uncertainty. We also report the results of our parameter inference study, finding our constrained parameters to be comparable with previously published results.
Author Information
Kamile Lukosiute (University of Amsterdam)
Brian Nord (Fermi National Accelerator Laboratory)
More from the Same Authors
-
2021 : Robustness of deep learning algorithms in astronomy - galaxy morphology studies »
Aleksandra Ciprijanovic · Diana Kafkes · Gabriel Nathan Perdue · Sandeep Madireddy · Stefan Wild · Brian Nord -
2021 : DeepZipper: A Novel Deep Learning Architecture for Lensed Supernovae Identification »
Robert Morgan · Brian Nord -
2022 : Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology Classification and Anomaly Detection »
Aleksandra Ciprijanovic · Ashia Lewis · Kevin Pedro · Sandeep Madireddy · Brian Nord · Gabriel Nathan Perdue · Stefan Wild -
2022 : Neural Inference of Gaussian Processes for Time Series Data of Quasars »
Egor Danilov · Aleksandra Ciprijanovic · Brian Nord -
2022 : A robust estimator of mutual information for deep learning interpretability »
Davide Piras · Hiranya Peiris · Andrew Pontzen · Luisa Lucie-Smith · Brian Nord · Ningyuan (Lillian) Guo -
2022 : DIGS: Deep Inference of Galaxy Spectra with Neural Posterior Estimation »
Gourav Khullar · Brian Nord · Aleksandra Ciprijanovic · Jason Poh · Fei Xu · Ashwin Samudre -
2022 : Strong Lensing Parameter Estimation on Ground-Based Imaging Data Using Simulation-Based Inference »
Jason Poh · Ashwin Samudre · Aleksandra Ciprijanovic · Brian Nord · Joshua Frieman · Gourav Khullar -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais