`

Timezone: »

 
Uncertainty Aware Learning for High Energy Physics With A Cautionary Tale
Aishik Ghosh · Benjamin Nachman

Machine learning tools provide a significant improvement in sensitivity over traditional analyses by exploiting subtle patterns in high-dimensional feature spaces. These subtle patterns may not be well-modeled by the simulations used for training machine learning methods, resulting in an enhanced sensitivity to systematic uncertainties. Contrary to the traditional wisdom of constructing an analysis strategy that is invariant to systematic uncertainties, we study the use of a classifier that is fully aware of uncertainties and their corresponding nuisance parameters. We show on two datasets that this dependence can actually enhance the sensitivity to parameters of interest compared to baseline approaches. Finally, we provide a cautionary example for situations where uncertainty mitigating techniques may serve only to hide the true uncertainties.

Author Information

Aishik Ghosh (UC Irvine)

Researching AI for physics. Working with OECD on AI policy, AI in science. Interests include AI Ethics.

Benjamin Nachman (Lawrence Berkeley National Laboratory)

More from the Same Authors

  • 2021 : Latent Space Refinement for Deep Generative Models »
    Ramon Winterhalder · Marco Bellagente · Benjamin Nachman
  • 2021 : Classifying Anomalies THrough Outer Density Estimation (CATHODE) »
    Joshua Isaacson · Gregor Kasieczka · Benjamin Nachman · David Shih · Manuel Sommerhalder
  • 2021 : Symmetry Discovery with Deep Learning »
    Krish Desai · Benjamin Nachman · Jesse Thaler
  • 2021 : Latent Space Refinement for Deep Generative Models »
    Ramon Winterhalder · Marco Bellagente · Benjamin Nachman
  • 2021 Workshop: Machine Learning and the Physical Sciences »
    Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborov√° · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais
  • 2017 : Poster session 2 and coffee break »
    Sean McGregor · Tobias Hagge · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy
  • 2017 : Poster session 1 and coffee break »
    Tobias Hagge · Sean McGregor · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy