Timezone: »

 
Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows
Pim de Haan · Roberto Bondesan

We propose a continuous normalizing flow for sampling from the high-dimensional probability distributions of Quantum Field Theories in Physics. In contrast to the deep architectures used so far for this task, our proposal is based on a shallow design and incorporates the symmetries of the problem. We test our model on the ϕ⁴ theory, showing that it systematically outperforms a realNVP baseline in sampling efficiency, with the difference between the two increasing for larger lattices. On the largest lattice we consider, of size 32 x 32, we improve a key metric, the effective sample size, from 1% to 66% w.r.t. the realNVP baseline.

Author Information

Pim de Haan (Qualcomm AI Research, University of Amsterdam)
Roberto Bondesan (Qualcomm AI Research)

More from the Same Authors

  • 2022 : Robust Scheduling with GFlowNets »
    David Zhang · Corrado Rainone · Markus Peschl · Roberto Bondesan
  • 2022 : Deconfounded Imitation Learning »
    Risto Vuorio · Pim de Haan · Johann Brehmer · Hanno Ackermann · Daniel Dijkman · Taco Cohen
  • 2022 Poster: Batch Bayesian Optimization on Permutations using the Acquisition Weighted Kernel »
    Changyong Oh · Roberto Bondesan · Efstratios Gavves · Max Welling
  • 2022 Poster: Neural Topological Ordering for Computation Graphs »
    Mukul Gagrani · Corrado Rainone · Yang Yang · Harris Teague · Wonseok Jeon · Roberto Bondesan · Herke van Hoof · Christopher Lott · Weiliang Zeng · Piero Zappi
  • 2022 Poster: Weakly supervised causal representation learning »
    Johann Brehmer · Pim de Haan · Phillip Lippe · Taco Cohen
  • 2020 Poster: Natural Graph Networks »
    Pim de Haan · Taco Cohen · Max Welling
  • 2019 Poster: Causal Confusion in Imitation Learning »
    Pim de Haan · Dinesh Jayaraman · Sergey Levine
  • 2019 Oral: Causal Confusion in Imitation Learning »
    Pim de Haan · Dinesh Jayaraman · Sergey Levine
  • 2018 : Poster Session »
    Sujay Sanghavi · Vatsal Shah · Yanyao Shen · Tianchen Zhao · Yuandong Tian · Tomer Galanti · Mufan Li · Gilad Cohen · Daniel Rothchild · Aristide Baratin · Devansh Arpit · Vagelis Papalexakis · Michael Perlmutter · Ashok Vardhan Makkuva · Pim de Haan · Yingyan Lin · Wanmo Kang · Cheolhyoung Lee · Hao Shen · Sho Yaida · Dan Roberts · Nadav Cohen · Philippe Casgrain · Dejiao Zhang · Tengyu Ma · Avinash Ravichandran · Julian Emilio Salazar · Bo Li · Davis Liang · Christopher Wong · Glen Bigan Mbeng · Animesh Garg
  • 2018 : Coffee Break and Poster Session I »
    Pim de Haan · Bin Wang · Dequan Wang · Aadil Hayat · Ibrahim Sobh · Muhammad Asif Rana · Thibault Buhet · Nicholas Rhinehart · Arjun Sharma · Alex Bewley · Michael Kelly · Lionel Blondé · Ozgur S. Oguz · Vaibhav Viswanathan · Jeroen Vanbaar · Konrad Żołna · Negar Rostamzadeh · Rowan McAllister · Sanjay Thakur · Alexandros Kalousis · Chelsea Sidrane · Sujoy Paul · Daphne Chen · Michal Garmulewicz · Henryk Michalewski · Coline Devin · Hongyu Ren · Jiaming Song · Wen Sun · Hanzhang Hu · Wulong Liu · Emilie Wirbel