Timezone: »
Recently, there has been a renewed interest in returning to the Moon, with many planned missions targeting the south pole. This region is of high scientific and commercial interest, mostly due to the presence of water-ice and other volatiles which could enable our sustainable presence on the Moon and beyond. In order to plan safe and effective crewed and robotic missions, access to high-resolution (<0.5 m) surface imagery is critical. However, the overwhelming majority (99.7%) of existing images over the south pole have spatial resolutions >1 m. In order to obtain better images, the only currently available way is to launch a new satellite mission to the Moon with better equipment to gather more precise data. In this work we develop an alternative that can be used directly on previously gathered data and therefore saving a lot of resources. It consist of a single image super-resolution (SR) approach based on generative adversarial networks that is able to super-resolve existing images from 1 m to 0.5 m resolution, unlocking a large catalogue of images (∼50,000) for a more accurate mission planning in the region of interest for the upcoming missions. We show that our enhanced images reveal previously unseen hazards such as small craters and boulders, allowing safer traverse planning. Our approach also includes uncertainty estimation, which allows mission planners to understand the reliability of the super-resolved images.
Author Information
Jose Delgado-Centeno (University of Luxembourg)
Paula Harder (Fraunhofer ITWM)
Ben Moseley (University of Oxford)
Valentin Bickel (Max Planck Institute for Solar System Research)
Siddha Ganju (Nvidia)
Miguel Olivares (Universidad de Luxemburgo)
Freddie Kalaitzis (University of Oxford)

Freddie is a Senior Research Fellow at the Dept. of Computer Science, University of Oxford, investigating topics mainly in AI for Earth Observation. He is the principal investigator of OpenSR, a €1M government contract with ESA, to increase the safety of Super-Resolution technology for the Sentinel-2 archive. He is also an independent consultant, involved in projects where he leads teams in the Frontier Development Lab (FDL), a private-public partnership between NASA, SETI, and Trillium Technologies. His recent FDL projects were funded by NASA SMD to investigate the use of SAR imagery for disaster detection, and by the USGS to develop near-real-time water stream mapping from daily PlanetScope imagery. His most recent work is a survey on the State of AI for Earth Observation, in collaboration with Satellite Applications Catapult.
More from the Same Authors
-
2020 : NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations »
Paula Harder -
2021 : Drought and Nitrogen Induced Stress Identification for Maize Crop using Deep Learning deployed on Unmanned Aerial Vehicles (Drones) »
Tejasri Nampally · G Ujwal Sai · Siddha Ganju · Ajay Kumar · Balaji Banothu -
2021 : Single Image Super-Resolution with Uncertainty Estimation for Lunar Satellite Images »
Jose Delgado-Centeno · Paula Harder · Ben Moseley · Valentin Bickel · Siddha Ganju · Miguel Olivares · Alfredo Kalaitzis -
2021 : Memory to Map: Improving Radar Flood Maps With Temporal Context and Semantic Segmentation »
Veda Sunkara · Nicholas Leach · Siddha Ganju -
2021 : Single Image Super-Resolution with Uncertainty Estimation for Lunar Satellite Images »
Jose Delgado-Centeno · Paula Harder · Ben Moseley · Valentin Bickel · Siddha Ganju · Miguel Olivares · Alfredo Kalaitzis -
2022 : Thermophysical Change Detection on the Moon with the Lunar Reconnaissance Orbiter Diviner sensor »
Jose Delgado-Centeno · Silvia Bucci · Ziyi Liang · Ben Gaffinet · Valentin T. Bickel · Ben Moseley · Miguel Olivares -
2022 : Self Supervised Learning in Microscopy »
Aastha Jhunjhunwala · Siddha Ganju -
2022 : Physics-Constrained Deep Learning for Climate Downscaling »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : Deep Learning for Rapid Landslide Detection using Synthetic Aperture Radar (SAR) Datacubes »
Vanessa Boehm · Wei Ji Leong · Ragini Bal Mahesh · Ioannis Prapas · Siddha Ganju · Freddie Kalaitzis · Edoardo Nemni · Raul Ramos-Pollán -
2022 : Disaster Risk Monitoring Using Satellite Imagery »
Kevin Lee · Siddha Ganju -
2022 : Identifying causes of Pyrocumulonimbus (PyroCb) »
Emiliano Diaz · Kenza Tazi · Ashwin Braude · Daniel Okoh · Kara Lamb · Duncan Watson-Parris · Paula Harder · Nis Meinert -
2022 : SAR-based landslide classification pretraining leads to better segmentation »
Ragini Bal Mahesh · Ioannis Prapas · Wei Ji Leong · Vanessa Boehm · Edoardo Nemni · Freddie Kalaitzis · Siddha Ganju · Raul Ramos-Pollán -
2022 : Disaster Risk Monitoring Using Satellite Imagery »
Kevin Lee · Siddha Ganju -
2022 : Contributed talk - (Paula Harder) - "Physics-Constrained Deep Learning for Climate Downscaling" »
Paula Harder -
2022 Poster: Open High-Resolution Satellite Imagery: The WorldStrat Dataset – With Application to Super-Resolution »
Julien Cornebise · Ivan Oršolić · Freddie Kalaitzis -
2021 : Scaling physics-informed neural networks to large domains by using domain decomposition »
Ben Moseley · Andrew Markham -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2013 Poster: Flexible sampling of discrete data correlations without the marginal distributions »
Alfredo Kalaitzis · Ricardo Silva