Timezone: »
Training deep learning models on medical datasets that perform well for all classes is a challenging task. It is often the case that a suboptimal performance is obtained on some classes due to the natural class imbalance issue that comes with medical data. An effective way to tackle this problem is by using targeted active learning, where we iteratively add data points to the training data that belong to the rare classes. However, existing active learning methods are ineffective in targeting rare classes in medical datasets. In this work, we propose a framework for targeted active learning that uses submodular mutual information functions as acquisition functions. We show that Tailsman outperforms the state-of-the-art active learning methods by ~10%-12% on the rare classes accuracy and ~4%-6% on overall accuracy for Path-MNIST and Pneumonia-MNIST image classification datasets.
Author Information
Suraj Kothawade (University of Texas at Dallas)
Lakshman Tamil (The University of Texas at Dallas)
Rishabh Iyer (University of Texas, Dallas)
Bio: Prof. Rishabh Iyer is currently an Assistant Professor at the University of Texas, Dallas, where he leads the CARAML Lab. He is also a Visiting Assistant Professor at the Indian Institute of Technology, Bombay. He completed his Ph.D. in 2015 from the University of Washington, Seattle. He is excited in making ML more efficient (both computational and labeling efficiency), robust, and fair. He has received the best paper award at Neural Information Processing Systems (NeurIPS/NIPS) in 2013, the International Conference of Machine Learning (ICML) in 2013, and an Honorable Mention at CODS-COMAD in 2021. He has also won a Microsoft Research Ph.D. Fellowship, a Facebook Ph.D. Fellowship, and the Yang Award for Outstanding Graduate Student from the University of Washington.
More from the Same Authors
-
2021 : Object-Level Targeted Selection via Deep Template Matching »
Suraj Kothawade · Michele Fenzi · Elmar Haussmann · Jose M. Alvarez · Christoph Angerer -
2022 : Using Informative Data Subsets for Efficient Training of Large Language Models: An Initial Study »
H S V N S Kowndinya Renduchintala · Krishnateja Killamsetty · Sumit Bhatia · Milan Aggarwal · Ganesh Ramakrishnan · Rishabh Iyer -
2022 : TALISMAN: Targeted Active Learning for Object Detection with Rare Classes and Slices using Submodular Mutual Information »
Suraj Kothawade · Saikat Ghosh · Sumit Shekhar · Yu Xiang · Rishabh Iyer -
2022 Poster: ORIENT: Submodular Mutual Information Measures for Data Subset Selection under Distribution Shift »
Athresh Karanam · Krishnateja Killamsetty · Harsha Kokel · Rishabh Iyer -
2022 Poster: AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient Hyper-parameter Tuning »
Krishnateja Killamsetty · Guttu Sai Abhishek · Aakriti Lnu · Ganesh Ramakrishnan · Alexandre Evfimievski · Lucian Popa · Rishabh Iyer -
2021 Poster: SIMILAR: Submodular Information Measures Based Active Learning In Realistic Scenarios »
Suraj Kothawade · Nathan Beck · Krishnateja Killamsetty · Rishabh Iyer -
2021 Poster: Learning to Select Exogenous Events for Marked Temporal Point Process »
Ping Zhang · Rishabh Iyer · Ashish Tendulkar · Gaurav Aggarwal · Abir De -
2021 Poster: RETRIEVE: Coreset Selection for Efficient and Robust Semi-Supervised Learning »
Krishnateja Killamsetty · Xujiang Zhao · Feng Chen · Rishabh Iyer -
2015 Poster: Submodular Hamming Metrics »
Jennifer Gillenwater · Rishabh K Iyer · Bethany Lusch · Rahul Kidambi · Jeffrey A Bilmes -
2015 Spotlight: Submodular Hamming Metrics »
Jennifer Gillenwater · Rishabh K Iyer · Bethany Lusch · Rahul Kidambi · Jeffrey A Bilmes -
2015 Poster: Mixed Robust/Average Submodular Partitioning: Fast Algorithms, Guarantees, and Applications »
Kai Wei · Rishabh K Iyer · Shengjie Wang · Wenruo Bai · Jeffrey A Bilmes -
2014 Poster: Learning Mixtures of Submodular Functions for Image Collection Summarization »
Sebastian Tschiatschek · Rishabh K Iyer · Haochen Wei · Jeffrey A Bilmes -
2013 Poster: Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints »
Rishabh K Iyer · Jeffrey A Bilmes -
2013 Oral: Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints »
Rishabh K Iyer · Jeffrey A Bilmes -
2013 Poster: Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions »
Rishabh K Iyer · Stefanie Jegelka · Jeffrey A Bilmes -
2012 Poster: Submodular Bregman Divergences with Applications »
Rishabh K Iyer · Jeffrey A Bilmes