Timezone: »
Recent line of work indicated strong improvement for transfer learning and model generalization when increasing model, data and compute budget scale in the pre-training. To compare effect of scale both in intra- and inter-domain full and few-shot transfer, in this study we combine for the first time large openly available medical X-Ray chest imaging datasets to reach a dataset scale comparable to ImageNet-1k. We then conduct pre-training and transfer to different natural or medical targets while varying network size and source data scale and domain, being either large natural (ImageNet-1k/21k) or large medical chest X-Ray datasets. We observe strong improvement due to larger pre-training scale for intra-domain natural-natural and medical-medical transfer. For inter-domain natural-medical transfer, we find improvements due to larger pre-training scale on larger X-Ray targets in full shot regime, while for smaller targets and for few-shot regime the improvement is not visible. Remarkably, large networks pre-trained on very large natural ImageNet-21k are as good or better than networks pre-trained on largest available medical X-Ray data when performing transfer to large X-Ray targets. We conclude that high quality models for inter-domain transfer can be also obtained by substantially increasing scale of model and generic natural source data, removing necessity for large domain-specific medical source data in the pre-training. (Code is available at: https://github.com/SLAMPAI/large-scale-pretraining-transfer)
Author Information
Mehdi Cherti (forschungszentrum jülich)
Jenia Jitsev (Juelich Supercomputing Center (JSC))
More from the Same Authors
-
2022 Poster: LAION-5B: An open large-scale dataset for training next generation image-text models »
Christoph Schuhmann · Romain Beaumont · Richard Vencu · Cade Gordon · Ross Wightman · Mehdi Cherti · Theo Coombes · Aarush Katta · Clayton Mullis · Mitchell Wortsman · Patrick Schramowski · Srivatsa Kundurthy · Katherine Crowson · Ludwig Schmidt · Robert Kaczmarczyk · Jenia Jitsev