`

Timezone: »

 
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities
Tianbao Yang

In this position paper, we will present and discuss opportunities and challenges brought about by a new deep learning method by AUC maximization (aka \underline{\bf D}eep \underline{\bf A}UC \underline{\bf M}aximization or {\bf DAM}) for medical image classification. Since AUC (aka area under ROC curve) is a standard performance measure for medical image classification, hence directly optimizing AUC could achieve a better performance for learning a deep neural network than minimizing a traditional loss function (e.g., cross-entropy loss). Recently, there emerges a trend of using deep AUC maximization for large-scale medical image classification. In this paper, we will discuss these recent results by highlighting (i) the advancements brought by stochastic non-convex optimization algorithms for DAM; (ii) the promising results on various medical image classification problems. Then, we will discuss challenges and opportunities of DAM for medical image classification from three perspectives, feature learning, large-scale optimization, and learning trustworthy AI models.

Author Information

Tianbao Yang (The University of Iowa)

More from the Same Authors