Timezone: »
Integrating physical inductive biases into machine learning can improve model generalizability. We generalize the successful paradigm of physics-informed learning (PIL) into a more general framework that also includes what we term physics-augmented learning (PAL). PIL and PAL complement each other by handling discriminative and generative properties, respectively. In numerical experiments, we show that PAL performs well on examples where PIL is inapplicable or inefficient.
Author Information
Ziming Liu (MIT)
Yuanqi Du (George Mason University)
Yunyue Chen (King's College London)
Max Tegmark (MIT)
Max Tegmark is a professor doing physics and AI research at MIT, and advocates for positive use of technology as president of the Future of Life Institute. He is the author of over 250 publications as well as the New York Times bestsellers “Life 3.0: Being Human in the Age of Artificial Intelligence” and "Our Mathematical Universe: My Quest for the Ultimate Nature of Reality". His AI research focuses on intelligible intelligence. His work with the Sloan Digital Sky Survey on galaxy clustering shared the first prize in Science magazine’s “Breakthrough of the Year: 2003.”
More from the Same Authors
-
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2022 : PIPS: Path Integral Stochastic Optimal Control for Path Sampling in Molecular Dynamics »
Lars Holdijk · Yuanqi Du · Ferry Hooft · Priyank Jaini · Berend Ensing · Max Welling -
2022 : ChemSpacE: Interpretable and Interactive Chemical Space Exploration »
Yuanqi Du · Xian Liu · Nilay Shah · Shengchao Liu · Jieyu Zhang · Bolei Zhou -
2022 : Structure-based Drug Design with Equivariant Diffusion Models »
Arne Schneuing · Yuanqi Du · Charles Harris · Arian Jamasb · Ilia Igashov · weitao Du · Tom Blundell · Pietro Lió · Carla Gomes · Max Welling · Michael Bronstein · Bruno Correia -
2022 : Improving Molecular Pretraining with Complementary Featurizations »
Yanqiao Zhu · Dingshuo Chen · Yuanqi Du · Yingze Wang · Qiang Liu · Shu Wu -
2023 Poster: Restart Sampling for Improving Generative Processes »
Yilun Xu · Mingyang Deng · Xiang Cheng · Yonglong Tian · Ziming Liu · Tommi Jaakkola -
2023 Poster: The Clock and the Pizza: Two Stories in Mechanistic Explanation of Neural Networks »
Ziqian Zhong · Ziming Liu · Max Tegmark · Jacob Andreas -
2023 Poster: The Quantization Model of Neural Scaling »
Eric Michaud · Ziming Liu · Uzay Girit · Max Tegmark -
2023 Oral: The Clock and the Pizza: Two Stories in Mechanistic Explanation of Neural Networks »
Ziqian Zhong · Ziming Liu · Max Tegmark · Jacob Andreas -
2023 Workshop: AI for Science: from Theory to Practice »
Yuanqi Du · Max Welling · Yoshua Bengio · Marinka Zitnik · Carla Gomes · Jure Leskovec · Maria Brbic · Wenhao Gao · Kexin Huang · Ziming Liu · Rocío Mercado · Miles Cranmer · Shengchao Liu · Lijing Wang -
2022 Spotlight: Poisson Flow Generative Models »
Yilun Xu · Ziming Liu · Max Tegmark · Tommi Jaakkola -
2022 Spotlight: Lightning Talks 6B-1 »
Yushun Zhang · Duc Nguyen · Jiancong Xiao · Wei Jiang · Yaohua Wang · Yilun Xu · Zhen LI · Anderson Ye Zhang · Ziming Liu · Fangyi Zhang · Gilles Stoltz · Congliang Chen · Gang Li · Yanbo Fan · Ruoyu Sun · Naichen Shi · Yibo Wang · Ming Lin · Max Tegmark · Lijun Zhang · Jue Wang · Ruoyu Sun · Tommi Jaakkola · Senzhang Wang · Zhi-Quan Luo · Xiuyu Sun · Zhi-Quan Luo · Tianbao Yang · Rong Jin -
2022 Panel: Panel 1C-3: Towards Understanding Grokking:… & Approximation with CNNs… »
Ziming Liu · GUOHAO SHEN -
2022 Poster: Towards Understanding Grokking: An Effective Theory of Representation Learning »
Ziming Liu · Ouail Kitouni · Niklas S Nolte · Eric Michaud · Max Tegmark · Mike Williams -
2022 Poster: Poisson Flow Generative Models »
Yilun Xu · Ziming Liu · Max Tegmark · Tommi Jaakkola -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2020 Poster: AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity »
Silviu-Marian Udrescu · Andrew Tan · Jiahai Feng · Orisvaldo Neto · Tailin Wu · Max Tegmark -
2020 Oral: AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity »
Silviu-Marian Udrescu · Andrew Tan · Jiahai Feng · Orisvaldo Neto · Tailin Wu · Max Tegmark