Timezone: »
A few-shot generative model should be able to generate data from a distribution by only observing a limited set of examples. In few-shot learning the model is trained on data from many sets from different distributions sharing some underlying properties such as sets of characters from different alphabets or sets of images of different type objects. We study a latent variables approach that extends the Neural Statistician to a fully hierarchical approach with an attention-based point to set-level aggregation. We extend the previous work to iterative data sampling, likelihood-based model comparison, and adaptation-free out of distribution generalization. Our results show that the hierarchical formulation better captures the intrinsic variability within the sets in the small data regime.With this work we generalize deep latent variable approaches to few-shot learning, taking a step towards large-scale few-shot generation with a formulation that readily can work with current state-of-the-art deep generative models.
Author Information
Giorgio Giannone (Technical University of Denmark - DTU)
Science is built up with data, as a house is with stones. But a collection of data is no more a science than a heap of stones is a house. (J.H. Poincaré)
Ole Winther (Technical University of Denmark)
More from the Same Authors
-
2020 Meetup: MeetUp: Copenhagen, Denmark »
Ole Winther -
2021 : Just Mix Once: Mixing Samples with Implicit Group Distribution »
Giorgio Giannone · Serhii Havrylov · Jordan Massiah · Emine Yilmaz · Yunlong Jiao -
2022 : Identifying endogenous peptide receptors by combining structure and transmembrane topology prediction »
Felix Teufel · Jan Christian Refsgaard · Christian Toft Madsen · Carsten Stahlhut · Mads Grønborg · Dennis Madsen · Ole Winther -
2022 : Few-Shot Diffusion Models »
Giorgio Giannone · Didrik Nielsen · Ole Winther -
2023 Poster: Diffusion Optimization Models with Trajectory Alignment for Constrained Design Generation »
Giorgio Giannone · Akash Srivastava · Ole Winther · Faez Ahmed -
2023 Poster: Implicit Transfer Operator Learning: Multiple Time-Resolution Models for Molecular Dynamics »
Mathias Schreiner · Ole Winther · Simon Olsson -
2020 : 1 - Real-time Classification from Short Event-Camera Streams using Input-filtering Neural ODEs »
Giorgio Giannone -
2019 : Posters »
Colin Graber · Yuan-Ting Hu · Tiantian Fang · Jessica Hamrick · Giorgio Giannone · John Co-Reyes · Boyang Deng · Eric Crawford · Andrea Dittadi · Peter Karkus · Matthew Dirks · Rakshit Trivedi · Sunny Raj · Javier Felip Leon · Harris Chan · Jan Chorowski · Jeff Orchard · Aleksandar Stanić · Adam Kortylewski · Ben Zinberg · Chenghui Zhou · Wei Sun · Vikash Mansinghka · Chun-Liang Li · Marco Cusumano-Towner -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Poster: BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling »
Lars Maaløe · Marco Fraccaro · Valentin Liévin · Ole Winther -
2018 Poster: Recurrent Relational Networks »
Rasmus Berg Palm · Ulrich Paquet · Ole Winther -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 Poster: A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning »
Marco Fraccaro · Simon Kamronn · Ulrich Paquet · Ole Winther -
2017 Spotlight: A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning »
Marco Fraccaro · Simon Kamronn · Ulrich Paquet · Ole Winther -
2017 Poster: Hash Embeddings for Efficient Word Representations »
Dan Tito Svenstrup · Jonas Hansen · Ole Winther