Timezone: »
The mysterious ability of neural networks to generalize is believed to stem from an implicit regularization, a tendency of gradient-based optimization to fit training data with predictors of low “complexity.” Despite vast efforts, a satisfying formalization of this intuition is lacking. In this talk I will present a series of works theoretically analyzing the implicit regularization in quantum tensor networks, known to be equivalent to certain (non-linear) neural networks. Through dynamical characterizations, I will establish an implicit regularization towards low tensor ranks, different from any type of norm minimization, in contrast to prior beliefs. I will then discuss implications of this finding to both theory (potential explanation for generalization over natural data) and practice (compression of neural network layers, novel regularization schemes). An underlying theme of the talk will be the potential of quantum tensor networks to unravel mysteries behind deep learning.
Works covered in the talk were in collaboration with Sanjeev Arora, Wei Hu, Yuping Luo, Asaf Maman and Noam Razin.
Author Information
Nadav Cohen (Tel Aviv University)
More from the Same Authors
-
2021 Spotlight: Continuous vs. Discrete Optimization of Deep Neural Networks »
Omer Elkabetz · Nadav Cohen -
2021 : Nadav Cohen »
Nadav Cohen -
2021 Poster: Continuous vs. Discrete Optimization of Deep Neural Networks »
Omer Elkabetz · Nadav Cohen -
2020 : Panel Discussion 1: Theoretical, Algorithmic and Physical »
Jacob Biamonte · Ivan Oseledets · Jens Eisert · Nadav Cohen · Guillaume Rabusseau · Xiao-Yang Liu -
2020 : Invited Talk 2 Q&A by Cohen »
Nadav Cohen -
2020 : Invited Talk 2: Expressiveness in Deep Learning via Tensor Networks and Quantum Entanglement »
Nadav Cohen -
2020 Workshop: First Workshop on Quantum Tensor Networks in Machine Learning »
Xiao-Yang Liu · Qibin Zhao · Jacob Biamonte · Cesar F Caiafa · Paul Pu Liang · Nadav Cohen · Stefan Leichenauer -
2020 Poster: Implicit Regularization in Deep Learning May Not Be Explainable by Norms »
Noam Razin · Nadav Cohen -
2019 Poster: Implicit Regularization in Deep Matrix Factorization »
Sanjeev Arora · Nadav Cohen · Wei Hu · Yuping Luo -
2019 Spotlight: Implicit Regularization in Deep Matrix Factorization »
Sanjeev Arora · Nadav Cohen · Wei Hu · Yuping Luo -
2018 : Poster Session »
Sujay Sanghavi · Vatsal Shah · Yanyao Shen · Tianchen Zhao · Yuandong Tian · Tomer Galanti · Mufan Li · Gilad Cohen · Daniel Rothchild · Aristide Baratin · Devansh Arpit · Vagelis Papalexakis · Michael Perlmutter · Ashok Vardhan Makkuva · Pim de Haan · Yingyan Lin · Wanmo Kang · Cheolhyoung Lee · Hao Shen · Sho Yaida · Dan Roberts · Nadav Cohen · Philippe Casgrain · Dejiao Zhang · Tengyu Ma · Avinash Ravichandran · Julian Emilio Salazar · Bo Li · Davis Liang · Christopher Wong · Glen Bigan Mbeng · Animesh Garg